Lineares Polarisationsfilter und λ/4-Plättchen I.

Hallo liebe Freunde der Mikrokristalle,

wie funktioniert ein λ/4-Plättchen in Kombination mit einem linearen Polarisationsfilter?.

In meinem letzten Blogbeitrag hatte ich Fotos mit dieser Filterkombination gezeigt und erwähnt, daß aus einem linearen Polarisationsfilter ein zirkulares wird, wenn man es mit einem λ/4-Plättchen kombiniert. Um zu beschreiben, was da passiert, müssen wir uns das Phänomen der Polarisation etwas näher anschauen. Da mein Blog von einer sehr breiten Leserschaft gelesen wird, möchte ich auch einige Begriffe erläutern, die physikalisch bewanderten Lesers natürlich vertraut  sind, manchem Leser aber nicht so sehr. Das Thema teile ich wegen des Umfangs in 2 Blogbeiträge auf.

Was Licht genau ist, kann niemand erschöpfend beantworten. Das ist schon einmal tröstlich. Lange hatte man sich Licht als Strahlen vorgestellt. Für die Berechnung von Linsen war und ist dieses Modell sehr dienlich. Manche physikalischen Eigenschaften des Lichts konnten  aber nicht mit dem Strahlenmodell erklärt werden. Dazu gehörte die Polarisation. Die Physiker ersannen daher ein anderes Modell für Licht, das Wellenmodell.  Damit ließ sich auch die Polarisation gut beschreiben.

Stellen wir uns vor, wir hätten einen Lattenzaun mit horizontal angeordneten Latten mit  Zwischenräumen. Durch einen der Zwischenräume spannen wir ein Seil, das wir an einer Wand hinter dem Lattenzaun befestigen. Das andere Ende regen wir an, indem wir es relativ schnell horizontal bewegen. Es entsteht eine horizontal schwingende Welle, die ungehindert den Lattenzaun passieren kann. Würden wir versuchen, das Seil vertikal zum Schwingen zu bringen, könnten die erzeugten Wellen den Zaun nicht passieren. Drehen wir den Lattenzaun aber um 90º, können nun die vertikal schwingenden Seilwellen den Zaun passieren.

Hier eine Skizze dazu:

Skizze einer horizontal und einer vertikal schwingenden Welle

Lichtwellen, wie sie z.B. von der Sonne kommen, führen sinusförmige Schwingen in alle möglichen Richtungen aus. Die in der Skizze dargestellten senkrechten und horizontalen Schwingungen sind also nur ein Ausschnitt aus dem gesamten  Schwingungsspektrum. Filtert man  aus den vielen Schwingungsebenen des natürlichen Lichts eine Schwingungsebene heraus, so spricht man von Polarisation. Die dazu verwendeten Filter nennen wir lineare Polarisationsfilter. Die Schwingungen der Wellen verlaufen rechtwinklig zur Ausbreitungsrichtung. Solche Wellen werden Transversal-Wellen genannt.

Soweit so gut. Was passiert aber, wenn man zwei Polarisationsfilter übereinander legt?  Besitzen beide Filter die gleiche Orientierung, besitzen also die Latten unserer Lattenzäune beide die genau gleiche Orientierung, so können wir erwarten, daß das in ersten Filter polarisierte Licht mit maximaler Intensität das zweite Polarisationsfilter passiert. Drehen wir eines der Filter um 90 ° so „kreuzen sich die Latten“ und sperren das Licht vollständig, die Intensität ist dann Null. Aber was passiert dazwischen?

Hierzu habe ich den folgenden Versuch durchgeführt: Auf ein Smartphone habe ich das Bild eines Winkelmessers geladen. Darüber habe ich eine Polarisationsfilterfolie gelegt, um polarisiertes Licht einer bestimmten Ebene zu erzeugen. (Prinzipiell ist das eigentlich nicht notwendig, denn das von einem Smartphone abgestrahlte Licht ist bereits polarisiert. Es hatte aber nicht die Schwingungsebene die ich wollte. Daher also die  Polarisationsfilterfolie). Über die Folie habe ich ein zweites Polarisationsfilter in Form eines zurecht geschnittenen Zeigers gelegt.

Und so sieht das Ganze im Ausschnitt aus: Der Zeiger steht auf 0º, beide Polarisationsfolien besitzen die gleiche Orientierung. Wir haben die maximale Intensität des passierenden Lichts. (Die leichte Abdunklung ist auf Absorptionsvorgänge der Folien zurückzuführen).

Winkel Null Grad

Winkel 0 Grad. Beide Polarisationsfilter besitzen die gleiche Orientierung. Maximale Intensität.

Im Weiteren habe ich den Zeiger um jeweils ca. 10º gedreht, man beachte die  Veränderung der Intensität:

 

Intensität des Lichts bei ca. 10 Grad.

Intensität des Lichts bei ca. 10 Grad Drehung.

 

Intensität des Lichts bei ca. 20 Grad Verschiebung.

Intensität des Lichts bei ca. 20 Grad Drehung.

 

Intensität des Lichts bei ca. 20 Grad Verschiebung.

Intensität des Lichts bei ca. 30 Grad Drehung.

 

Intensität des Lichts bei ca. 40 Grad Drehung

Intensität des Lichts bei ca. 40 Grad Drehung.

 

Intensität des Lichts bei ca. 50 Grad Drehung.

Intensität des Lichts bei ca. 50 Grad Drehung.

 

Intensität des Lichts bei ca. 60 Grad Drehung.

Intensität des Lichts bei ca. 60 Grad Drehung.

 

Intensität des Lichts bei ca. 70 Grad Drehung.

Intensität des Lichts bei ca. 70 Grad Drehung.

 

Intensität des Lichts bei ca. 80 Grad Drehung.

Intensität des Lichts bei ca. 80 Grad Drehung.

 

Intensität des Lichts bei ca. 90 Grad Drehung.

Intensität des Lichts bei ca. 90 Grad Drehung.

 

Im letzten Bild sind die Filter genau gekreuzt, kein Licht geht mehr hindurch, die Intensität ist Null. Welche Erkenntnisse kann man aus dem Experiment ziehen?

Bei der Betrachtung der Aufnahmen fällt auf, daß die Abnahme der Intensität nicht linear verläuft. Es geht langsam los und steigert sich dann sehr schnell. Und offensichtlich ist, daß der Winkel um den man eine Folie dreht, dabei von ausschlaggebender Bedeutung ist.

Bei einer sinusförmig schwingenden Licht-Welle ist die Amplitude, also die maximale Auslenkung,  ein Maß für die Intensität des Lichts.

Sinusförmig schwingende Lichtwelle.

Sinusförmig schwingende Lichtwelle.

 

I = (Amplitude)² (1)

Man muss die Amplitude ins Quadrat setzen, da ihr Maximum sowohl positiv also auch negativ sein kann, wie die Grafik zeigt. Das Quadrat ist aber immer positiv. Der Amplitude kann der Zahlenwert der Auslenkung zugeordnet werden.  Sie besitzt aber auch eine Richtung, das ist der Ebenenwinkel, in der die Welle  schwingt. Damit ist die Amplitude einer Welle ein Vektor.

Ein kleiner Einschub: Es gibt im Wesentlichen zwei Arten physikalischer Größen, Skalare und Vektoren. Beispiel für eine skalare physikalische Größe: Der Temperatur in einem Raum, sagen wir 20º C kann man keine Richtung zuordnen. Die Richtung spielt für eine Temperaturangabe keine Rolle. Daher ist die Temperatur eine skalare Größe, die auf der Temperaturskala liegt. Beispiel für eine vektorielle physikalische Größe: Um einen Handwagen in eine bestimmte Richtung zu ziehen, benötigen wir eine Kraft. Diese Kraft hat einen bestimmten Betrag. Dazu gehört aber auch eine Richtung. Üben wir die Kraft in eine falsche Richtung aus, kommen wir nicht ans Ziel. Daher setzt sich die Kraft die auf den Wagen ausgeübt wird aus einem Betrag und einer Richtung zusammen. Solche Größen werden  Vektoren genannt. Vektoren werden grafisch durch einen Pfeil dargestellt. Die Länge gibt den Betrag der physikalischen Größe an, der Winkel die Richtung der wirkenden Größe.

Der Vektor der Amplitude ist im Folgenden durch einen roten Pfeil dargestellt. Dabei repräsentiert die Länge des Pfeils den Betrag der Intensität, sein Winkel gibt die Ebene an, in der die Lichtwelle schwingt. Beträgt der Winkel zwischen beiden Polarisationsfiltern 0º, so haben wir die maximale Durchlässigkeit Imax. In einem Koordinatensystem sieht das dann so aus:

 

Maximale Durchlässigkeit, Winkel 0 Grad.

Maximale Durchlässigkeit, Winkel 0º.

 

Verdrehen wir das Filter um 90º, wird der Lichtdurchgang vollständig gesperrt.

 

Vollständige Sperrung bei 90 Grad.

Vollständige Sperrung, Winkel 90º

 

 

Die Projektion des Amplituden-Vektors auf die senkrechte Achse ergibt die durchlässigen Anteile. Die Projektion auf die horizontale Achse ergibt die undurchlässigen Anteile.

 

Durchlässige- und undurchlässige Anteile ergeben sich aus der Projektion des Vektors auf die Koordinatenachsen.

Durchlässige- und undurchlässige Anteile ergeben sich aus der Projektion des Amplituden-Vektors auf die Koordinatenachsen.

Bei einem Winkel von 90º ist die Durchlässigkeit I = 0. Auch cos 90º ist 0.  Bei einem Winkel von 0º ist die Durchlässigkeit I = Imax.   und  cos 0º ist 1.  Wir können daher annehmen, daß der Zusammenhang zwischen Winkel und Durchlässigkeit durch die Cosinus-Funktion korrekt beschrieben wird. Gleichung (1) können wir dann folgendermaßen schreiben:

I = Imax · cos² ∝ (2)

Die mathematische Gleichung deckt sich mit unserer Beobachtung. Bei kleinen Winkeln passiert zunächst noch nicht viel, aber ab dann geht es sehr schnell mit der Abnahme der Licht-Intensität, es ist eine quadratische Abnahme.

Im zweiten Teil kommen wir dann zu unserem λ/4-Plättchen und zum Zirkularpolarisationsfilter.

Vorher aber noch einige Mikrofotos von Brenzcatechin. Dazu wurden einige Kristalle auf einem Objektträger im Methylethylketon gelöst. Nach wenigen Minuten setzt die Kristallisation ein. Vorsicht beim Umgang mit Brenzcatechin. Der Stoff ist giftig und die Kristalle verdampfen recht schnell!  Also nie offen stehen lassen! Nur mit  kleinen Mengen arbeiten.

 

Brenzcatechin im polarisierten Licht, ohne Lambda-Plättchen

Brenzcatechin im polarisierten Licht ohne λ/4-Plättchen.

 

Brenzcatechin im polarisierten Licht, mit Lambda/4-Plättch

Brenzcatechin im polarisierten Licht mit  λ/4-Plättchen.

 

Brenzcatechin im polarisierten Licht mit λ/4-Plättchen.

Brenzcatechin im polarisierten Licht ohne  λ/4-Plättchen.

 

160804_0007hdr_Detail

Brenzcatechin im polarisierten Licht mit λ/4-Plättchen.

Auch die folgenden Aufnahmen sind  Brenzcatechin. Das interessante daran ist, sie stammen, zusammen mit den oberen Aufnahmen, von einem einzigen Objektträger. Ich möchte damit zeigen, wie vielfältig die Motive von Mikrokristallen sein können.

 

160804_0001hdr_2hdr_3hdr_4hdr_5hdr_tonemapped_k

Brenzcatechin im polarisierten Licht ohne λ/4-Plättchen.

 

160804_0017hdr_Detail

Brenzcatechin im polarisierten Licht mit λ/4-Plättchen.

 

160804_0018hdr_Localtone

Brenzcatechin im polarisierten Licht ohne λ/4-Plättchen.

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Blogbeitrag folgt der zweite Teil mit der Besprechung des λ/4-Plättchens und des Zirkularpolarisationsfilters.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

p.s.

Wer Freude an schönen Bildern von Mikrokristallen hat, sie aber nicht selber fotografieren will, dem empfehle ich meinen neuen Kalender für 2017, der seit dem ersten Juni im Handel ist.

catalog_577467

Titel: Surreale Farbwelten-Mikrokristalle

Autor: Dieter Schenckenberg

Hier die ISBN-Nummern:
Wandkalender 2017 DIN A4 quer ISBN 978-3-664-84126-4

Wandkalender 2017 DIN A3 quer ISBN 978-3-664-84127-1

Wandkalender 2017 DIN A2 quer ISBN 978-3-664-84128-8

Den Kalender gibt es bei

http://www.amazon.de

http://www.amazon.co.uk

http://www.amazon.fr

http://www.thalia.de

http://www.buchhandel.de

http://www.weltbild.de

http://www.buecher.de

http://www.ebook.de

http://www.calvendo.de

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advertisements

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s