Lineares Polarisationsfilter und λ/4-Plättchen II.

Hallo liebe Freunde der Mikrokristalle,

es hat etwas gedauert, mit dem zweiten Beitrag zur Zirkularpolarisation, in dem ich das Prinzip und den Aufbau eines Zirkularpolarisationsfilters beschreibe.

In meinem letzten Blogbeitrag habe ich experimentell gezeigt, wie sich die Intensität des polarisierten Lichts beim Passieren durch ein zweites lineares Polarisationsfilter in Abhängigkeit vom Drehwinkel verändert. Eine Lichtwelle wurde als eine sinusförmige Schwingung, vergleichbar mit der Schwingung eines angeregten Seils dargestellt.

Skizze einer horizontal und einer vertikal schwingenden Welle

Skizze einer horizontal und einer vertikal schwingenden Welle

Da gibt es aber einen Widerspruch. Würde sich eine Lichtwelle tatsächlich wie eine Seilwelle verhalten, würde schon ein geringfügiges Drehen eines Polarisationsfilters ausreichen, um den gesamten Lichtdurchgang zu sperren. Man hat aber gesehen, daß beim Verdrehen eines der Filter zunächst wenig passiert, dann aber geht es sehr schnell. Die Intensität, mit der das Licht die Polarisationsfilter passiert wurde mit Hilfe des Amplitudenvektors mathematisch beschrieben. Dazu wurde der Amplitudenvektor in seine horizontale und vertikale Komponente zerlegt. Die vertikale Komponente erwies sich als Maß für die Intensität des passierten Lichts. Man muß sich also von der Vorstellung frei machen, daß eine Lichtwelle einer mechanischen  Seilwelle sehr ähnelt. Das Modell der Seilwelle dient nur dem besseren Verständnis. Ich arbeite hier bewusst nicht mit magnetischen und elektrischen Feldvektoren, um die Sache nicht zu kompliziert zu machen. Wenn ich von Wellenvektoren spreche sind die elektrischen Feldvektoren gemeint.

Man kann, wie wir gesehen haben, eine linear polarisierte Lichtwelle, mit einer wie auch immer gearteten Orientierung, mathematisch in einen horizontalen und einen vertikalen Wellenanteil zerlegen.

 

Horizontale und vertikale Komponente einer polarisierten Welle.

Horizontale und vertikale Wellenanteile einer polarisierten Welle.

Beide Wellenanteile verlaufen genau synchron. Nun stelle man sich einmal gedanklich vor, eine der beiden Wellenanteile würde um ein viertel der Wellenlänge, also λ/4 versetzt laufen, wie im folgenden Bild zu sehen ist.

 

Zwei Teilwellen um lambda/4 versetzt.

Zwei Wellenanteile einer polarisierten Welle  um λ /4 versetzt mit den Wellenvektoren.

 

Diese beiden Wellenanteile verlaufen jetzt nicht mehr synchron. Kann man so etwas praktisch durchführen? Ja man kann. Und zwar, man ahnt es schon, mit einem λ/4-Plättchen. Wie funktioniert das?

Bei manchen Kunststoff-Folien können die Moleküle durch mechanisches Strecken in die Länge gezogen werden. Moleküle behindern das Licht beim Passieren und verlangsamen die Lichtgeschwindigkeit. Bei solch langgestreckten Molekülen ist es nicht egal, ob passierende Lichtwellen längs oder quer zur Streckrichtung schwingen, sie werden unterschiedlich stark abgebremst . Und so gelingt es, eine Gangunterschied mit solchen Kunststoffen zu erzeugen. Man kann die Dicke einer solchen Kunststoffschicht so bemessen, daß man genau einen Gangunterschied von λ/4 also ein Viertel Wellenlänge erhält, und schon haben wir unser λ/4-Plättchen.

Sind nun beide Wellenanteile um λ/4 gegeneinander versetzt, so führt der Wellenvektor eine schraubenförmige Rotationsbewegung durch. Daher wird die so polarisierte Lichtwelle zirkular polarisiert genannt.

Meine zeichnerischen Fähigkeiten sind leider zu begrenzt, die Rotation des Wellenvektors vernünftig darzustellen. Ich habe aber auf YouTube eine Animation gefunden, die diese Rotation sehr schön zeigt:

Man sieht zunächst die synchron laufenden Wellenanteile bei denen der Wellenvektor nicht rotiert , und danach die um λ/4 versetzten mit dem rotierenden Wellenvektor. Ich finde die Animation ganz hervorragend, dem Autor kann man nur gratulieren. (Zur Wiederholung unten ganz links das runde Pfeilsymbol anklicken).

Ein Zirkularpolarisationsfilter besteht nun aus einer Kombination aus  linearem Polarisationsfilter und nachgeschalteter λ/4-Folie. Man verwendet diese Art von Filter in der Fotografie und vor allen Dingen bei Sonnenbrillen.

Für die Mikrofotografie, ich hatte es im letzten Blogbeitrag erwähnt, benutzt man beide Komponente besser getrennt. Ein Zirkularpolarisationsfilter ersetzt hier also nicht das λ/4-Plättchen. Hier zwei Fotos von L-Weinsäure im polarisierten Licht, jeweils mit und ohne λ/4 Plättchen. Die L-Weinsäure wurde im Methylethyketon gelöst und bildete einen sehr dünne Kristallschicht auf dem Objektträger.

 

L-Weinsäure fotografiert im polarisierten Licht mit L/4-Plättchen.

L-Weinsäure fotografiert im polarisierten Licht mit λ/4-Plättchen.

 

L-Weinsäure fotografiert im polarisierten Licht ohne L/4-Plättchen.

L-Weinsäure fotografiert im polarisierten Licht ohne λ/4-Plättchen.

 

L-Weinsäure fotografiert im polarisierten Licht mit L/4-Plättchen.

L-Weinsäure fotografiert im polarisierten Licht mit λ /4-Plättchen.

 

L-Weinsäure fotografiert im polarisierten Licht ohne L/Plättchen.

L-Weinsäure fotografiert im polarisierten Licht ohne λ/Plättchen.

Wie man sieht, kann man mit einem  λ/4-Plättchen manchmal interessante Effekte erzielen. Als Folien sind die λ/4-Plättchen im Internet relativ preiswert zu bekommen.

 

Soviel für heute liebe Freunde der Mikrokristalle. Der nächste Blogbeitrag wird nicht so lange auf sich warten lassen. Es ist zur Abwechslung mal wieder ein Zucker bzw. ein Zuckerersatzstoff dran, den man sich leicht beschaffen kann. Es ist der Sorbit.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

p.s.

Wer Freude an schönen Bildern von Mikrokristallen hat, sie aber nicht selber fotografieren will, dem empfehle ich meinen neuen Kalender für 2017, der seit dem ersten Juni im Handel ist.

catalog_577467

Titel: Surreale Farbwelten-Mikrokristalle

Autor: Dieter Schenckenberg

Hier die ISBN-Nummern:
Wandkalender 2017 DIN A4 quer ISBN 978-3-664-84126-4

Wandkalender 2017 DIN A3 quer ISBN 978-3-664-84127-1

Wandkalender 2017 DIN A2 quer ISBN 978-3-664-84128-8

Den Kalender gibt es bei

http://www.amazon.de

http://www.amazon.co.uk

http://www.amazon.fr

http://www.thalia.de

http://www.buchhandel.de

http://www.weltbild.de

http://www.buecher.de

http://www.ebook.de

http://www.calvendo.de

 

 

 

 

Ein Kommentar zu “Lineares Polarisationsfilter und λ/4-Plättchen II.

  1. Lieber Herr Schenckenberg!
    Als Neueinsteiger in das Thema Fotografieren von Mikrokristallen bin ich auf Ihre sehr interessanten und ausführlichen Blogs gestoßen.
    Leider kann ich unter dem Begriff „λ/4-Plättchen“ im Internet sehr wenig finden bzw mir auf das Gefundene keinen Reim machen. Im oa Blog schreiben Sie, dass man diese Plättchen im Internet günstig erwerben kann, da habe ich aber leider nichts gefunden. Ein Link wäre hier sicher sehr hilfreich.
    Nach meinem Verständnis müssten Polarisationsfolien, wie sie für Handy- bzw Computerdispays verwendet werden, die selbe Funktion erfüllen.
    Auf jeden Fall bin ich durch Ihre Beiträge bereits ein schönes Stück weiter gekommen und das Fotografieren ist zumindest in Reichweite gerückt.
    Danke für die hilfreichen Anleitungen und Erklärungen!

    Like

Hinterlasse einen Kommentar