Tolle Kristalle mit Benzoesäure

Hallo liebe Freunde der Mikrokristalle,

in meinem letzten Beitrag habe ich den kleinen Trick mit dem Tesafilm unter dem Objektträger beschrieben.
Den kann man auch gut bei der Benzoesäure anwenden. Diese gut aus Wasser oder Spiritus kristallisierende Substanz bildet eindrucksvolle Kristalle, die aber nicht farbig sind. Hier hilft der Trick mit dem Tesafilm.

Benzoesäure bekommt man beim freundlichen Apotheker. Sagt ihm genau, was ihr mit der Benzoesäure vorhabt, dann wird er vielleicht ein paar Gramm herausrücken.

Hier zunächst die Formel:

Benzoesäure

Benzoesäure

Wegen seiner antimikrobiellen Eigenschaften wird die Substanz in der Lebensmittel-Industrie und  bei Kosmetika zur Konservierung eingesetzt.

Hier nun eine Aufnahmen der Benzoesäure mit und ohne Tesastreifen. Das Lösungsmittel war Isopropanol.

Benzoesäure ohne Tesaband

Benzoesäure ohne Tesaband

 

Benzoesäure mit Tesaband

Benzoesäure mit Tesaband

Bei der folgenden Aufnahme zeige ich nur das Resultat mit Tesaband:

 

Benzoesäure mit Tesafolie

Benzoesäure mit Tesaband

Bei der Benzoesäure treten Kristallstrukturen stärker als Farben in den Vordergrund, wie besonders die letzte Aufnahme zeigt. Das nächste Foto ist ein weiteres eindrucksvolles Beispiel dafür. Die Aufnahme hatte es vor 2 Jahren auf die Titelseite der Fotocommunity geschafft.  Sie wurde im polarisierten Licht ohne Tesaband aufgenommen.

Benzoesäure ohne Tesaband

Benzoesäure ohne Tesaband

Für die Fotos habe ich ein „Noname“-Klebeband verwendet. Kunststofffolien müssen „gestreckt“ werden, damit sie sich für unsere Zwecke eignen.

Im Prinzip funktioniert fast jede gestreckte, transparente Kunststofffolie. Was passiert beim Strecken und wie wirkt sich das aus?  Kunststofffolien bestehen aus langkettigen Polymermolekülen. Wenn man sie streckt, werden Molekülketten, die sonst eher ungerichtet kneulförmig  angeordnet sind, bis zu einem gewissen Grad parallel ausgerichtet. Fällt polarisiertes Licht durch eine ungestreckte Folie, wird es beim Auftreffen auf die Polymermoleküle abgebremst. Da diese Moleküle ungerichtet sind, ist es egal, unter welchem Winkel das Licht auf die Folie trifft, es wird unabhängig vom Eintrittswinkel gleichmäßig abgebremst. Sind die Polymermoleküle durch die Streckung aber in eine parallele Anordnung gebracht, so kann man sich vorstellen, dass es jetzt in Bezug auf die Abbremsung nicht mehr egal ist, unter welchem Winkel das polarisierte Licht auf die Polymermoleküle trifft. Es wird daher beim Durchtritt in Abhängigkeit vom Eintrittswinkel unterschiedlich abgebremst, was eine Phasenverschiebung der Lichtwellen bewirkt. Im Ergebnis kommt es durch die Phasenverschiebung der Lichtwellen zu Interferenzen. Diese sind ausschlaggebend für die Farbwirkung.Wer sich genauer für die physikalischen Hintergründe interessiert:  In meinem Blogbeitrag  zu λ/4-Verzögerungsplättchen, https://mikrokristalle.com/tag/lambda4-plaettchen/ , habe ich den Vorgang ausführlicher beschrieben.

Soviel für heute, liebe Freunde der Mikrokristalle.

In meinem nächsten Blogbeitrag zeige ich Fotos der Salicylsäure, die man ebenfalls beim freundlichen Apotheker kaufen kann. Sie ist der Benzoesäure in der Struktur sehr ähnlich.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

Ein Leuchtturm in der Servicewüste

Hallo liebe Freunde der Mikrokristalle,

wie im letzten Blogbeitrag angekündigt, zeige ich einige Aufnahmen der Äpfelsäure, kristallisiert aus  Lösungsmitteln.

Vorher möchte ich aber von einem persönlichen Erlebnis berichten, das mich sehr beeindruckt hat:

Ich besitze einige tausend Dias aus alter Zeit. Für einen besonderen Anlass musste ich diese durchschauen, was ohne Diaprojektor praktisch unmöglich ist. Bei meinem  Leitz Pradovit 153 Diaprojektor hakte nach 30 jährigem treuen Dienst plötzlich der Dia-Transport. Was war zu tun? In meiner Not rief ich bei Leitz in Wetzlar an und schilderte mein Problem. Die freundliche Mitarbeiterin der Service-Abteilung sagte mir, dass man leider 2017, wegen mangelnder Nachfrage, die Reparatur von Diaprojektoren eingestellt, und daher auch kaum noch Ersatzteile für die alten Geräte vorrätig habe.

Bei den meisten Firmen wäre das Gespräch hier wohl zu Ende gewesen. Nicht aber bei Leitz. Nach Rücksprache mit einem Techniker frug mich die Mitarbeiterin, ob ich den Projektor persönlich vorbeibringen könne. Da ich in der Nähe von Wetzlar  wohne, vereinbarten wir für den nächsten Tag einen Termin.

Also machte ich mich auf den Weg in die Zentrale. Dort erwartete mich ein Techniker. Er gab mir einen Gutschein für ein Getränk im Leitz-Cafe und gab mir noch ein paar Tipps, wie ich die Wartezeit überbrücken könne: Leitz-Schau-Raum und Leitz-Museum. (Beides sehr sehenswert im neuen Leitz-Areal). Nach ca. einer Stunde rief er mich auf dem Handy an und sagte, der Projektor sei fertig. Man habe ein defektes Zahnrad ausgetauscht und das gute Stück gereinigt. Er übergab mir das reparierte Gerät und ich bat, mir die Rechnung nach Hause zu schicken. „Das kostet nichts, ist ein Service unseres Hauses“, war die Antwort.

Ich war wirklich im höchsten Maße verblüfft. Man erlebt so etwas nicht sehr häufig, und ich möchte daher auf diesem Wege der Firma Leitz danken. Beim Preisvergleich vom Mikroskopen, an denen man ja auch nach vielen Jahren noch seine Freude haben will, sollte man neben der Qualität der Instrumente auch den Service-Aspekt durchaus beachten. Leitz ist für mich, nach dieser Erfahrung, ein Leuchtturm in der ansonsten ziemlich verbreiteten Service-Wüste. (Wer meinen Bog regelmäßig liest weiss , dass es noch ein kleines und feines serviceorientiertes  Unternehmen in Wetzlar gibt, das auch sehr gute Mikroskope für den etwas kleineren Geldbeutel herstellt).

Nun aber zurück zur Äpfelsäure. Aus Wasser kristallisiert sie manchmal ziemlich unwillig. Ganz anders sieht es bei Spiritus, Isopropanol, Aceton oder Methyläthylketon aus. Aus diesen Lösungsmitteln kristallisiert Äpfelsäure sehr leicht in schönen Kristallen. Die sind oft aber nicht farbig. Die Ursache kann ich nur vermuten: Da sich Lösungsmittel auf dem Objektträger, im Gegensatz zu Wasser, sehr gut verteilen, entstehen eine sehr dünne Kristallschichten. Möglicherweise reichen die für die Farbigkeit verantwortlichen Interferenzerscheinungen an diesen dünnen Schichten nicht aus, um farbige Bilder zu erzeugen. Hier ein Beispiel:

 

Äpfelsäure kristallisiert aus Isopropanol

Äpfelsäure kristallisiert aus Isopropanol

Manchmal erhält man in solchen Fällen interessante Effekte, wenn man unter den Objektträger ein Stück Tesa-Film klebt.

 

Äpfelsäure kristallisiert aus Isopropanol ohne Tesafilm unter dem Objektträger

Äpfelsäure kristallisiert aus Isopropanol ohne Tesafilm unter dem Objektträger

 

Äpfelsäure kristallisiert aus Isopropanol mit Tesafilm unter dem Objektträger

Äpfelsäure kristallisiert aus Isopropanol mit Tesafilm unter dem Objektträger

Folien wie Tesafilm wirken ähnlich wie λ/4-Verzögerungsplatten. (Infos darüber findet man hier:  https://mikrokristalle.com/2016/08/). Wenn die Kristalle beim Kristallisieren aus wassermischbaren organischen Lösungsmitteln wie Spiritus oder Isopropanol zu klein werden, weil das Lösungsmittel zu schnell verdampft, kann man einen Tropfen Wasser zugeben.

 

Soviel für heute, liebe Freunde der Mikrokristalle. In meinem nächsten Blogbeitrag werde ich auf den Trick mit dem Tesafilm etwas näher eingehen.

Bis dahin wünsche ich eine gute Zeit.

 

H-D-S

 

 

 

 

 

 

 

 

Farbenprächtige Mikrokristalle von Äpfelsäure.

Hallo liebe Freude der Mikrokristalle,

richtig farbenprächtige Bilder erhält man aus Mikrokristallen der  Äpfelsäure.

Hier zunächst die chemische Formel:

Äpfelsäure

Äpfelsäure

 

Das kleine Sternchen zeigt,  daß das Molekül ein asymmetrisches Kohlenstoffatom besitzt. Es liegen  2 optisch aktive Formen, eine D-Äpfelsäure  und eine L-Äpfelsäure vor.

Für die Aufnahmen habe ich ein Racemat, also eine 1:1 Mischung beider Komponenten verwendet.

Da Äpfelsäure  auch als Lebensmittelzusatzstoff verwendet wird, ist es relativ leicht zu beschaffen, z.B bei einem freundlichen Apotheker. Man kann Äpfelsäure aber auch bei Amazon kaufen. Es wird dort u.a. als DL-Äpfelsäure angeboten.

Für chemisch interessierte: Die Waldensche Umkehrung wurde von Paul Walden 1896 an der Umsetzung von L(-)-Äpfelsäure zu L(-)-Chlorbernsteinsäure und daraus zurück zu der jetzt in der optischen Konfiguration „umgekehrten“ D(+)-Äpfelsäure entdeckt. (Mit den damals zur Verfügung stehenden analytischen Mitteln war das eine großartige Leistung).

Wer mehr über die optische Aktivität erfahren möchte kann sich meinen Blogbeitrag über Optische Aktivität am Beispiel der Weinsäure ansehen. (April 2015).

Die Substanz ist in Wasser, Spiritus oder Aceton gut löslich. Sie kristallisiert aber nur schwer. Viel besser funktioniert die Kristallisation aus der Schmelze. Man gibt ein paar Kristalle auf einen Objektträger, legt ein Deckgläschen darüber und schmilzt vorsichtig z.B. auf einer Herdplatte auf. Sobald die Kristalle geschmolzen sind, das Deckgläschen mit dem Stiel eines Teelöffels oder Ähnlichem etwas andrücken, damit man eine dünne Schicht erhält. Dann sofort von der Platte nehmen. Die Äpfelsäure kristallisiert nach wenigen Sekunden. (Man kann auch sehr langsam, am Rande der Herdplatte abkühlen lassen).

Auf diese Weise erhält man prächtige Kristallformen, manchmal sogar ganz grossartige, wie die folgenden Aufnahmen zeigen:

 

Äpfelsäure Racemat Mikrokristalle aus der Schmelze.

Äpfelsäure – Racemat
Mikrokristalle aus der Schmelze.

 

Äpfelsäure- Racemat Mikrokristalle aus der Schmelze.

Äpfelsäure – Racemat
Mikrokristalle aus der Schmelze.

 

 

Äpfelsäure- Racemat Mikrokristalle aus der Schmelze.

Äpfelsäure – Racemat
Mikrokristalle aus der Schmelze.

 

Mit etwas Glück und Ausdauer, gelingen dann auch besonders interessante Aufnahmen, wie die folgende, die fast aussieht wie ein Drache:

 

Äpfelsäure- Racemat Mikrokristalle aus der Schmelze.

Äpfelsäure – Racemat
Mikrokristalle aus der Schmelze.

 

Soviel für heute liebe Freunde der Mikrokristalle. Ich wünsche erfolgreiches Experimentieren mit der Äpfelsäure, die tatsächlich so, und nicht Apfelsäure heißt.

Für meinen nächsten Blogbeitrag will ich versuchen, ansprechende Kristalle dieser tollen Säure aus einer Lösung zu erzeugen.

Bis dahin wünsche ich eine gute Zeit.

 

H-D-S

 

 

 

 

 

 

 

 

Tipps zur Beschaffung anorganischer Substanzen II.

Hallo liebe Freunde der Mikrokristalle,

es hat etwas gedauert mit diesem Beitrag. Aber man muss ja auch mal Urlaub machen.

Heute stelle ich eine weitere anorganische Substanz vor, die leicht zu beschaffen ist. Es ist das Natriumthiosulfat. Wer früher Filme oder Fotos entwickelt hat, kennt es als Fixiersalz. Entsprechend kann man auch heute noch das Fixiersalz im Fotohandel kaufen, man bekommt es aber auch bei Kosmos. (Ich habe die Firma in meinem letzten Blogbeitrag schon als Beschaffungsquelle erwähnt).

Natriumthiosulfat hat die chemische Formel Na2S2O3 • 5H2O. Ein Molekül der Verbindung bindet 5 Moleküle Wasser als sogenanntes Kristallwasser. Das Salz schmilzt schon bei ca. 48 ºC. Natriumthiosulfat ist sehr gut in Wasser löslich und zeigt ein etwas ungewöhnliches aber dennoch nicht sehr seltenes Kristallisationsverhalten. Löst man ein paar Kristalle auf einem Objektträger mit einem Tropfen dest. Wasser, so verdunstet das Wasser über Nacht, und es bleiben  kleine, nicht kristalline Tropfen zurück. Wenn man jetzt ein Deckgläschen auf die Tropfen legt und das Gläschen etwas verschiebt, beginnt das Salz zu kristallisieren. Diese nicht kristallisierten Tropfen nennt man eine unterkühlte Schmelze. (Siehe mein Blogbeitrag über Natriumacetat. https://mikrokristalle.com/2016/11/22/natriumacetat-mikrokristalle-in-allen-farben/). Das Salz bildet sehr interessante Kristalle, wie die folgenden Aufnahmen zeigen:

 

Natriumthiosulfat

Natriumthiosulfat
Kristallisiert aus wässriger Lösung.

 

Natriumthiosulfat

Natriumthiosulfat
Kristallisiert aus wässriger Lösung.

 

Mit Natriumthiosulfat kann man grafisch sehr wirksame Aufnahmen machen, aber immer daran denken, die Substanz kristallisiert erst, wenn man sie etwas ankratzt oder wie ober beschrieben, sie mit einem Deckglas etwas bewegt.

Da das Salz schon bei ca. 48 °C schmilzt, kann man auch aus der Schmelze schöne Kristalle erzeugen. Dabei muss man behutsam vorgehen, da durch zu starkes Erwärmen das Kristallwasser aus den Kristallen ausgetrieben wird. Man erhält dann nur ein wasserfreies feines Pulver. Schmilzt man aber vorsichtig auf, erhält man schöne Kristalle, wie die folgende Aufnahme zeig:

Natriumthiosulfat Kristallisiert aus der Schmelze.

Natriumthiosulfat
Kristallisiert aus der Schmelze.

 

Soviel für heute, liebe Freunde der Mikrokristalle. In meinen nächsten Blogbeitrag werde ich das Mikroskop vorstellen, mit dem die meisten meiner Bilder entstanden sind.

Bis dahin wünsche ich eine gute Zeit.

 

H-D-S

 

Tipps zur Beschaffung anorganischer Substanzen.

Hallo liebe Freunde der Mikrokristalle,

es ist immer wieder ein Problem, geeignete Substanzen zu kaufen, mit denen man Kristalle züchten kann, die farbenprächtige Mikrofotos im polarisierten Licht ergeben.

Eine Quelle dafür ist der Kosmos-Verlag, der u.a.  Experimentierkästen z.B. für Chemie oder Mikroskopie anbietet. Für diese Experimentierkästen kann man Chemikalien nachkaufen, auch wenn man die Kästen selber gar nicht besitzt. Da die Chemikalienmengen sehr klein, für unsere Zwecke aber vollkommen ausreichend sind, benötigt man für den Kauf auch keinen Sachkundenachweis, der sonst erforderlich wäre. Ich möchte betonen, daß ich vom Kosmos-Verlag für die hier gegebenen Informationen weder Geld- noch Sachzuwendungen erhalte.

Einige der anorganischen Chemikalien sind für unsere Zwecke zu gebrauchen. Grundsätzlich ergeben anorganische Chemikalien ebenso schöne farbige Kristalle wie organische. Es gibt aber Einschränkungen: Damit anorganische Kristalle im polarisierten Licht farbig wirken, müssen die Kristalle anisotrop sein. (Einzelheiten dazu findet man in einem Blogbeitrag von mir, zu dem ihr mit dem folgenden Link kommt: https://mikrokristalle.com/2015/11/17/warum-ergeben-mikrokristalle-im-polarisierten-licht-farbige-bilder/). Leider haben nicht alle anorganischen Kristalle anisotropen Charakter. Einfache Kristalle, z.B.  von Natriumchlorid (NaCl) oder Kaliumbromid (KBr), kristallisieren in Form von Würfeln. Durch diesen sehr symmetrischen Bau sind sie isotrop. Damit bekommt man keine farbigen Bilder.

Manchmal erhält man auch durch schöne Kristallformen  in s/w ansprechende Aufnahmen. Hier gleich ein Beispiel von Natriumhydrogensulfat, NaHSO4.

Natriumhydrogensulfat

Bei Kosmos gibt es auch „Gelbes Blutlaugensalz“ bzw. Kaliumferrocyanid oder exakt bezeichnet: Kaliumhexacyanoferrat(II), ( K4[Fe(CN)6]•3H2O,  mit dem man sehr schöne farbige Kristalle erhält. Auch hier gleich zwei  Beispiele:

Kaliumhexaferrocyanid

 

Kaliumhexaferrocyanid

Soviel für heute, liebe Freunde der Mikrokristalle.

In meinem nächsten Blogbeitrag stelle ich noch weitere anorganische Verbindungen vor, die man über den Kosmos-Verlag beziehen kann.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

 

Auflösungsvermögen optischer Mikroskope II.

Hallo liebe Freunde der Mikrokristalle,

in meinem letzten Blogbeitrag wandelten wir auf den Spuren Erst Abbes, um das Auflösungsvermögen optischer Mikroskope zu erkunden. Über das Beugungsverhalten  von Lichtwellen an einem Gitter kamen wir zu der Gleichung

x ≥ λ/NA   (1)

mit x als dem kleinsten Abstand zwischen 2 Punkten, die gerade noch scharf abgebildet werden können,

λ der Wellenlänge der Beleuchtung und

NA, der von Ernst Abbe eingeführten Numerischen Apertur.

Es gibt aber noch einen anderen Weg, x zu berechnen, der am Ende zu einem ähnlichen Resultat kommt. Er führt über das Rayleigh Kriterium. Wir erinnern uns: Durch den Wellencharakter des Lichts wird ein Lichtpunkt, nicht als Punkt, sondern als Beugungsscheibchen auf einem Bildschirm abgebildet. Zur Demonstration habe ich das Licht eines roten Laser Pointers durch eine enge Blende geleitet und auf einem Bildschirm aufgefangen und fotografiert.

Beugungsbild eines roten Laserpointers.

Beugungsbild eines roten Laserpointers.

 

Man nennt die Beugungsscheibchen auch Rayleigh-Scheibchen nach dem englischen Gelehrten John William Strutt, 3. Baron Rayleigh. Seine Beugungstheorie will ich hier kurz darstellen:

Betrachten wir die folgende Skizze:

 

Zwei Punkte P1 und P2 fallen unter einem Winkel ∝ durch eine Linse, mit dem Durchmesser d auf einen Schirm. Das umgebende Medium links von der Linse sei Immersionsöl mit dem Brechungsindex nöl. Rechts von der Linse haben wir den Brechungsindex nLuft und den Winkel ∝’, der sich von ∝ wegen der unterschiedlichen Brechungsindizes unterscheidet. (Ist in der Skizze nicht ganz korrekt gezeichnet). Auf dem Bildschirm, er entspricht dem Zwischenbild im Mikroskop, werden die Punkte gerade noch getrennt als Beugungsscheibchen abgebildet. Die Kurven  rechts zeigen die Intensitätsverteilung I des Lichts bei den beiden Beugungsscheibchen. In der Mitte, auf den gestrichelt dargestellten Linien, liegen die Beugungsmaxima 0. Ordnung. Das sind die Lichtanteile, die ungebeugt die Linse passieren. Das Maximum 0. Ordnung der blauen Kurve, fällt zusammen mit dem Minimum 1. Ordnung der roten Kurve. Sie liegen beide auf der blau gestrichelten Linie. Entsprechend fallen das  Maximum 0. Ordnung der roten Kurve und das Minimum 1. Ordnung der blauen Kurve  auf der rot gestrichelten Linie zusammen.

Das Rayleigh-Kriterium besagt nun: Die Unterscheidung zweier Bildpunkte ist dann möglich, wenn das Beugungsmaximum 0. Ordnung des einen Punktes mindestens im Beugungsminimum 1. Ordnung des anderen Punktes liegt.

Bei einem Spalt gilt für das Beugungsminimum 1. Ordnung, wie im vorigen Blogbeitrag dargestellt:

sin ∝ = λ/d   (2)

Nun haben wir bei einem Mikroskop aber keinen Spalt sondern die Fassung des Objektivs als Strahlenbegrenzung. Bei kreisförmigen Öffnungen liefert die Theorie, die hier nicht näher ausgeführt werden soll:

sin ∝’ ≈ ∝’≈ 1,22 • λ/d   (3)

oder wenn man den statt des Durchmessers den Radius r der Linsenfassung einsetzt:

sin ∝’ ≈ 0,61 • λ/r   (4).

Wie schon ausgeführt sind die Winkel ∝ und ∝’ wegen der unterschiedlichen Brechungsindizes nicht gleich. Wenden wir das Brechungsgesetz an, so können wir schreiben:

sin ∝’ = noel • sin ∝   (5)  (Der Brechungsindex nLuft ist 1).

In Gleichung (4) eingesetzt:

noel • sin ∝ = 0,61 • λ/r   (6)

Unser Ziel ist es ja, das x, also den Abstand zwischen den Punkten P1 und P2 unter Berücksichtigung des Abstands a (Entfernung der Punkte von der Linse), zu berechnen. Da der Winkel ∝ sehr klein ist, kann man schreiben:

sin ∝ ≈ x/a   (7).  In Gleichung (6) eingesetzt:

noel • x/a ≈ 0,61 • λ/r.    (7)   Nach x aufgelöst ergibt sich:

x\approx \frac{0,61\cdot \lambda }{n_{oel}\cdot \frac{r}{a}}    (8)

Der Ausdruck unter dem grossen Bruchstrich entspricht in etwas grober Annäherung  der von Ernst Abbe definierten Numerische Apertur NA, so dass wir schreiben können:

x\approx \frac{0,61\cdot \lambda }{NA}     (9)

Hier nochmal Gleichung (1), etwas anders geschrieben also oben:

x\approx \frac{\lambda }{\ NA}    (1)

Bis auf den Faktor 0,61 stimmen beide Gleichungen überein. Man kommt mit 2 verschiedenen Herleitungen zu sehr ähnlichen Ergebnissen. Wir sehen, je grösser die Numerische Apertur eines Objektivs ist, umso feiner sind die auflösbaren Strukturen.

Im ersten Teil des Blogbeitrags haben wir das Kriterium von Ernst Abbe verwendet, um den kleinstmöglichen Abstand zwischen 2 Punkten zu ermitteln, der in einem optischen Mikroskop noch aufgelöst werden kann. Das Kriterium lautete: „Das Beugungsmaximum 0. Ordnung und mindestens das Beugungsminimum 1. Ordnung müssen durch ein Objektiv fallen, um noch ein strukturiertes Bild zu ergeben.“

Gemäß dem Rayleigh-Kriterium haben wir hergeleitet:  “ Zwei Bildpunkte sind dann noch voneinander zu unterscheiden, wenn das Beugungsmaximum 0. Ordnung des einen Bildpunktes mindestens mit dem Beugungsminimum 1. Ordnung des anderen Bildpunktes zusammenfällt.“

Diese Ableitungen, liebe Freunde der Mikrokristalle stammen in wesentlichen Teilen nicht von mir. Ich habe sie einem sehr anschaulichen Video entnommen. Titel: „Mikroskop Teil 4 Auflösungsvermögen Numerische Apertur“. Veröffentlicht auf YouTube  von Prof. Dr. Stephan Mueller.  Er lehrt  an der Fachhochschule Nordwestschweiz. Es gibt eine Reihe sehr interessanter Videos zu Themen der Physik von Stephan Mueller auf YouTube.

Es ist ja oft ein Problem, geeignete Substanzen für schöne Mikrofotos im polarisierten Licht zu beschaffen. In meinen letzten Blogbeiträgen habe ich einige leicht zu beschaffende anorganische Salze vorgestellt. Heute habe ich mir das Kupfersulfat vorgenommen, das für unsere Zwecke gut geeignet ist.

Hier zwei Fotos von Kupfersulfat:

Mikrokristalle von Kupfersulfat im polarisierten Licht.

 

 

Mikrokristalle von Kupfersulfat im polarisierten Licht.

 

Jeder kennt wohl die Kosmos Baukästen. Es gibt auch einen für Chemie, der eine Reihe von interessanten anorganischen Substanzen enthält. Man kann diese, auch ohne den Chemie-Baukasten zu besitzen, bestellen. Es sind ungefähr 12 verschiedene Stoffe. Auch das Kupfersulfat gehört dazu. Die Chemikalien erhält man bei Kosmos auch als chemischer Laie problemlos.

Soviel für heute, liebe Freunde der Mikrokristalle.

Für meinen nächsten Blogbeitrag werde ich einige der „Kosmos-Substanzen“ testen, und dann darüber berichten.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

p.s. Falls jemand die Zeitschrift FOCUS Gesundheit liest: In der Juni/Juli Ausgabe 2017 findet sich zu einem Artikel über Ibuprofen auf Seite 57 ein Mikrofoto des Wirkstoffs von mir. Wie man den Wirkstoff aus einer Tablette isolieren kann, habe ich in meinem Blogbeitrag „Ibuprofen aus einer Tablette isolieren“, April 2015 beschrieben.

 

 

 

Magnesiumsulfat ein Tannendünger in prachtvollem Outfit.

Hallo liebe Freunde der Mikrokristalle,

eigentlich hatte ich für diesen Beitrag das Natriumcitrat angekündigt, aber es hat mit der Züchtung ansprechender Kristalle nicht richtig geklappt.

Hier ein anderer Star unter den Mikrokristallen, das Magnesiumsulfat. Man nennt es auch Bittersalz, und das nicht ohne Grund. Der Stoff hat einen bitteren Geschmack und wird u.a. auch als Abführmittel verwendet. Man bekommt das Salz ohne Probleme in der Apotheke. Aber auch im Baumarkt gibt es Magnesiumsulfat als Düngemittel für Tannen und andere Nadelgewächse.

Die Substanz ist ein Magnesiumsalz der Schwefelsäure und hat die folgende einfache Formel: MgSO4. Magnesiumsulfat ist in kleinen Mengen ungiftig und sehr gut in Wasser löslich. Es bildet sehr leicht schöne Kristalle auf dem Objektträger. Man gibt einige wenige Körnchen auf einen sauberen Objektträger und fügt 1-3 Tropfen dest. Wasser hinzu. Die Kristalle lösen sich schnell auf. Man läßt die Probe an einem staubfreien Ort langsam eintrocknen. Eilige legen den Objektträger auf die Heizung und fügen ein Papierdach darüber, um lästigen Staub zu vermeiden. Nach dem Verdunsten des Wassers haben sich schöne Kristalle gebildet, die prächtige Fotos unter dem Mikroskop im polarisierten Licht ergeben. Wir arbeiten hier ohne Deckglas. Nun ein paar Beispiele:

Magnesiumsulfat

Magnesiumsulfat-Kristalle  im polarisierten Licht

 

Magnesiumsulfat-Kristalle im polarisierten Licht.

Magnesiumsulfat-Kristalle im polarisierten Licht.

 

Magnesiumsulfat-Kristalle im polarisierten Licht.

Magnesiumsulfat-Kristalle im polarisierten Licht mit zusätzlichem Lambda-Plättchen.

 

Diese Beispiele zeigen, daß auch anorganische Mikrokristalle prächtig unter dem Mikroskop im polarisierten Licht aussehen. Anorganische Salze haben den Vorteil, daß sie meist viel leichter zu beschaffen sind, als organische Stoffe.

Warum düngt man eigentlich Nadelgewächse mit Magnesiumsulfat? Magnesium spielt in der Pflanzenwelt eine große Rolle. Das Blattgrün der Pflanzen besitzt bei der sogenannten Photosynthese der Pflanzen eine wichtige Funktion. Aus Wasser und Kohlendioxid erzeugen Pflanzen in den Blättern mit Hilfe des Blattgrüns, auch Chlorophyll genannt, Kohlenhydrate, wie z.B. Zucker. Die Kohlenhydrate benötigen die Pflanzen für ihr Wachstum. Sie erzeugen daraus z.B. Cellulose als Stützgerüst oder Stärke als Energiespeicher und vieles andere mehr. Das Chlorophyll ist ein großes, kompliziertes Molekül, das in seiner Mitte das Magnesium als Zentralatom besitzt. Magnesium ist also für Pflanzen ein unentbehrliches Element. Darum führen wir es den Pflanzen z.B. als Magnesiumsulfat zu.

Und hier noch etwas ziemlich erstaunliches: Wie erwähnt, ist Magnesium das Zentralatom einer komplizierten chemischen Struktur, dem Chlorophyll. Ersetzt man nun das Magnesium in dieser Struktur durch  Eisen, so erhält man den roten Blutfarbstoff Häm, der gebunden an sogenannten Globinen, als Hämoglobin durch unsere Adern fließt und für den Sauerstoff-Transport in unsere Zellen verantwortlich ist. Es ist doch interessant, wie genial und doch sparsam, die Natur in der Evolution vorgeht. (Die Strukturen um die Zentralatome sind zwar nicht zu 100% identisch, sind sich aber doch erstaunlich ähnlich).

Soviel für heute, liebe Freunde der Mikrokristalle. In meinem nächsten Blogbeitrag möchte ich die Mikroskopbeleuchtung etwas näher betrachten, besonders in Hinblick auf die Fotografie der Mikrokristalle.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

Natriumacetat: Mikrokristalle in allen Farben.

Hallo liebe Freunde der Mikrokristalle,

in meinem letzten Blogbeitrag habe ich das Natriumcarbonat vorgestellt. Man kann damit recht schöne Mikrokristalle erzeugen, die aber farblich nicht sehr viel hergeben.,

Ganz anders sieht es mit Natriumacetat aus. Mit diesem Salz lassen sich fantastisch farbige Mikrokristalle erzeugen. Wir können uns Natriumacetat relativ leicht selber herstellen. Dazu benötigen wir an Chemikalien nur das Natriumcarbonat aus dem vorigen Blogbeitrag und Essig aus der Küche. (Der saure Bestandteil des Essigs ist Essigsäure).

Für chemisch weniger bewanderte Leser einige Erläuterungen: Natriumcarbonat ist das Salz einer starken Lauge, nämlich der Natronlauge und einer sehr schwachen Säure, der Kohlensäure.

Wenn man dem Salz einer schwachen Säure eine stärkere Säure zusetzt, verdrängt die stärkere Säure die schwache. Genau das wollen wir durchführen. Essigsäure ist eine viel stärkere Säure als Kohlensäure und verdrängt diese sehr leicht. Aus dem Natriumcarbonat wird Natriumacetat.

Folgende Gerätschaften werden benötigt:

  • Feuerfeste flache Schale aus Porzellan oder Metall (kein Aluminium oder Kupfer).
  • Teelöffel
  • Kleiner Filtertrichter
  • Kaffeefilterpapier
  • Becherglas oder Schnapsglas

Chemikalien:

  • Natriumcarbonat (Soda)
  • Speiseessig
  • Brennspiritus oder Isopropanol

Wer keine feuerfeste Schale besitzt kann auch eine kleine Glasschale verwenden, muss dann aber das Lösungsmittel ohne Wärmezufuhr verdunsten lassen, was einige Tage benötigt.

So, und nun geht es los: In die feuerfeste Schale geben wir einen gestrichenen Teelöffel Natriumcarbonat. Jetzt fügen wir ganz langsam Essig hinzu. Das Natriumcarbonat schäumt stark auf. Das rührt daher, dass die Essigsäure die Kohlensäure aus dem Natriumcarbonat austreibt. Die Kohlensäure zerfällt, da instabil, sofort zu Wasser und Kohlendioxid, das als Gas entweicht. Wir geben so lange in kleinen Portionen Essig zu, bis keine Gasbildung mehr sichtbar ist. (Ein kleiner Überschuss an Essig schadet nicht). Wir haben jetzt eine klare Lösung vorliegen, die bereits unser Natriumacetat enthält. Aber wir sind noch nicht fertig mit unserer Arbeit. Der Speiseessig enthält meist noch Zutaten wie z.B. Gewürze und andere Zusatzstoffe. Diese Dinge wollen wir entfernen, da besonders das reine Natriumacetat sehr schön kristallisiert.

Wir stellen unsere feuerfeste Schale auf eine Herdplatte und lassen das Wasser langsam verdampfen. (Es geht auch bei Raumtemperatur, benötigt aber eine knappe Woche). Zum Schluss bitte aufpassen, es kann sehr leicht spritzen, Schutzbrille tragen, darum die Schale rechtzeitig von der Herdplatte nehmen. Die Eindampftemperatur sollte 100°C nicht überschreiten! (Wenn es etwas gespritzt hat, kein Problem, mit einem feuchten Lappen von der Herdplatte entfernen. Hier ist nichts giftig). Wir haben jetzt einen weißen bis leicht gelblichen Rückstand in unserer Schale, das Natriumacetat. Um es von Verunreinigungen und restlicher Essigsäure zu befreien, geben wir ca. 20 ml (ein Schnapsglas) Spiritus hinzu und lösen den Kristallbrei vom Schalenboden. Eventuelle Würzextrakte und Essigsäure lösen sich im Spiritus. Das Natriumacetat ist aber in dem Lösungsmittel nur sehr wenig löslich.

Wir schneiden uns ein kreisrundes Filter aus einem Kaffeefilter und falten es einmal, so dass es einen Halbkreis bildet. Den falten wir nochmal zu einem Viertelkreis. Jetzt können wir den Viertelkreis zu einer Filtertüte öffnen, die wir in den Filtertrichter einsetzen. Wir feuchten das Papierfilter mit Spiritus an, damit es gut an der Trichterwand anliegt. Jetzt befördern wir den Filterbrei mit dem Spiritus in das Filter, das wir in ein Glasgefäß stellen, damit der Spiritus dort hineinlaufen kann. Wenn der Spiritus abgelaufen ist, waschen wir noch mit etwas Spiritus nach.

Wir haben jetzt im Filter praktisch reines, weißes Natriumacetat, das wir nur noch trocknen müssen. Das geht am besten in der eingangs verwendeten Schale an der Luft in staubarmer Umgebung.

Das trockene Natriumacetat bewahren wir in einer kleinen Flasche oder Plastiktüte auf. (Beschriften nicht vergessen). Eine Warnung zum Spiritus: Spiritus ist fast reiner Alkohol, der mit einer extrem bitter schmeckende Substanz vergällt ist, damit man ihn nicht trinken oder zu alkoholischen Getränken verarbeiten kann. Er ist daher auch steuerfrei und preiswert. In der Küche sollte man mit Spiritus vorsichtig umgehen, damit nicht Gefäße oder Tischoberflächen oder Wischlappen den bitteren Geschmack annehmen! Viel besser geeignet ist an Stelle von Spiritus Isopropanol der korrekt 2-Propanol genannt wird. Also, immer sauber arbeiten und hinterher alles gut abwaschen. Spiritus ist feuergefährlich! Niemals mit offener Flamme arbeiten. Auch in der Nähe darf kein offenes Feuer sein!

Hier noch kurz die formelmäßige Beschreibung:

Na2CO3 + 2 CH3COOH = 2 CH3COONa + CO2 + H2O

Beim Kristallisieren des Natriumacetats gibt es eine Besonderheit: Natriumacetat kristallisiert zusammen mit 3 Molekülen Kristallwasser. Formal können wir schreiben: CH3COONa⋅3H2O. Dieses sogenannte Trihydrat löst sich  bei 58°C im eigenen Kristallwasser. Bei ca. 120°C beginnt das Kristallwasser zu verdampfen. Das wasserfreie Salz schmilzt bei ca. 300°C. Darum muss man beim Eindampfen aufpassen, dass die Temperatur 120ºC nicht überschreitet. Es ist aber auch kein Problem, wenn man das wasserfreie Natriumacetat herstellt. Auf dem Objektträger entsteht ohnehin bei Wasserzugabe wieder das Trihydrat.

Es gibt eine weiter Besonderheit des Natriumacetats, die wir auf dem Objektträger beobachten können: Dazu geben wir einige Körnchen unseres Salzes auf einen sauberen Objektträger. Wir fügen einen Tropfen eines Lösungsmittels Spiritus/dest. Wasser 1:1 hinzu. Die Körnchen lösen sich leicht auf, eventuell mit einem Glasstab oder dem Stiel eines Teelöffels etwas verteilen. Bei Zimmertemperatur, (nicht auf der Heizung!!) das Lösungsmittel verdunsten lassen. Nachdem das Lösungsmittel verdunstet ist liegt auf dem Objektträger eine nicht kristalline Masse vor. Wenn man diese, z.B. mit einer Stecknadel, berührt oder etwas ankratzt, erfolgt eine spontane Kristallisation. Man kann auch ganz wenig Natriumacetat zwischen den Fingern ganz fein verreiben und wenige Körnchen, ein einziges würde genügen, auf den Objektträger geben. Sofort erfolgt spontane Kristallisation. Natriumacetat bildet gerne sogenannte unterkühlte Schmelzen, die dann bei Berührung oder Erschütterung kristallisieren. Die so entstandenen Kristalle ergeben sehr schöne Bilder im polarisierten Licht, wie die folgenden Aufnahmen zeigen:

Natriumacetat Trihydrat

Natriumacetat Trihydrat

 

Natriumacetat Trihydrat

Natriumacetat Trihydrat

 

Natriumacetal Trihydrat

Natriumacetat Trihydrat

 

Natriumacetat Trihydrat

Natriumacetat Trihydrat

 

Vergleicht man die Kristalle von Natriumcarbonat mit denen von Natriumacetat, so sieht man, dass letztere viel farbiger sind. Ich vermute dafür folgenden Grund: Voraussetzung für bunte Strukturen im polarisierten Licht ist der anisotrope Charakter der Kristalle. (Den Begriff der Anisotropie habe ich in meinem Blogbeitrag  Warum ergeben Mikrokristalle im polarisierten Licht farbige Bilder?  ausführlich beschrieben). Ein Natriumcarbonat-Kristall ist vermutlich symmetrischer aufgebaut, als ein Natriumacetat-Kristall und besitzt daher geringere anisotrope Eigenschaften. Aber das ist nur eine Vermutung von mir. Das Kristallwasser befindet sich nicht irgendwo eingeschlossen im Kristall, es ist im Kristallgitter eingebaut.

Die Eigenschaft von Natriumacetat, unterkühlte Schmelzen zu bilden, nutzt man in Wärmespeichern, die man im Winter als Sitzkissen benutzen kann. Diese Wärmespeicher bestehen aus einer Kunststoffhülle, die Natriumacetat enthält. Zusätzlich befindet sich darin ein Metallstreifen. Zu Hause erwärmt man das Sitzkissen auf ca. 60°C. Dabei lösen sich die Kristalle unter Wärmeaufnahme im eigenen Kristallwasser. Dieses Kissen kann man jetzt abkühlen lassen. Wenn man die gespeicherte Kristallisationswärme nutzen will, knickt man das Kissen an der Stelle, wo der Metallstreifen sitzt. (Entspricht dem Anritzen auf dem Objektträger). Jetzt kristallisiert das Natriumacetat und setzt die Kristallisationswärme frei. Das Sitzkissen erwärmt sich auf ca. 35°C.

Wer sich lieber Natriumacetat kaufen möchte, bekommt es preiswert bei Amazon. Dort gibt es auch meinen Kalender „Surreale Farbwelten – Mikrokristalle“ für 2017 mit tollen Mikrokristallen.

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Blogbeitrag vergleiche ich Bilder der Zitronensäure mit Natriumzitrat, dem Natriumsalz der Zitronensäure, das wir auch leicht selber herstellen können.

Bis dahin wünsche ich eine gute Zeit.

 

H-D-S

catalog_577467

Titel: Surreale Farbwelten-Mikrokristalle

Autor: Dieter Schenckenberg

Hier die ISBN-Nummern:
Wandkalender 2017 DIN A4 quer ISBN 978-3-664-84126-4

Wandkalender 2017 DIN A3 quer ISBN 978-3-664-84127-1

Wandkalender 2017 DIN A2 quer ISBN 978-3-664-84128-8

Den Kalender gibt es bei

http://www.amazon.de

http://www.amazon.co.uk

http://www.amazon.fr

http://www.thalia.de

http://www.buchhandel.de

http://www.weltbild.de

http://www.buecher.de

http://www.ebook.de

http://www.calvendo.de

Mikrokristalle von Natriumcarbonat.

Hallo liebe Freunde der Mikrokristalle,

Weihnachten naht mit großen Schritten. Da lohnt es sich, einmal das Natriumcarbonat auf dem Objektträger zum Kristallisieren zu bringen. Manchmal erhält man sehr interessante, sternenähnliche Kristalle, die gut zu der Jahreszeit passen.

Natriumcarbonat, auch Soda genannt, wurde früher in jedem Haushalt zum Wäsche waschen verwendet. Man nannte es Bleichsoda oder Waschsoda. Soda findet in der Industrie vielfältige Verwendung, so z.B. in der Glasindustrie. Das weltgrößte chemische Unternehmen, die BASF in Ludwigshafen, trug „Soda“ ursprünglich in ihrem Namen. Sie hieß Badische Anilin- & Sodafabrik.

Na2CO3 ist die chemische Formel für Soda, es handelt sich also um das Natriumsalz der Kohlensäure. Soda bekommt man in jeder Apotheke, manchmal auch in Drogerien. Soda gibt es auch in manchen Baumärkten. Das Salz löst sich sehr leicht in Wasser, es ist unlöslich in Spiritus.

Zum Züchten von Mikrokristallen gibt man ein paar Kristalle auf einen Objektträger und fügt einen Tropfen Wasser hinzu. Die Kristalle lösen sich sofort auf. Man kann, zur besseren Verteilung des Wassers auf dem Objektträger, dem Wasser ganz wenig Spülmittel zusetzen oder Wasser/Spiritus 3:1 verwenden. Die Kristallisation setzt, sobald das Lösungsmittel weitgehend verdampft ist, sehr schnell ein. Je langsamer das Lösungsmittel verdampft, umso größer werden die Kristalle.

Die folgenden Bilder sind HDR-Aufnahmen, aus jeweils 3 Bildern unterschiedlicher Belichtung, die mit Photomatix Pro zusammengesetzt wurden. Diese Technik habe ich in früheren Blogbeiträgen schon ausführlich beschrieben. (HDRI-Software). Neben den obligatorischen Polarisationsfiltern wurde ein λ/4-Filter verwendet. Auch diese Technik habe ich kürzlich detailliert besprochen. (Lineare Polarisation). Hier die Ergebnisse:

 

Natriumcarbonat

HDR-Aufnahme von Natriumcarbonat im polarisierten Licht, zusätzlich mit λ/4-Filter.

 

Natriumcarbonat

HDR-Aufnahme von Natriumcarbonat im polarisierten Licht, zusätzlich mit λ/4-Filter.

 

Natriumcarbonat

HDR-Aufnahme von Natriumcarbonat im polarisierten Licht, zusätzlich mit λ/4-Filter.

 

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Blogbeitrag stellen wir uns ein organisches Salz aus Soda und Essig selber her. Es ist das Natriumacetat, das sehr schöne farbige Kristalle bildet. Man benötigt zur Herstellung nur Dinge, die in jedem Haushalt vorhanden sind. Eine spannende Sache.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

p.s. Weihnachten naht, wie wäre es mit einem Kalender voller prächtiger Mikrokristalle als originelles Weihnachtsgeschenk? 
catalog_577467

Titel: Surreale Farbwelten-Mikrokristalle

Autor: Dieter Schenckenberg

Hier die ISBN-Nummern:
Wandkalender 2017 DIN A4 quer ISBN 978-3-664-84126-4

Wandkalender 2017 DIN A3 quer ISBN 978-3-664-84127-1

Wandkalender 2017 DIN A2 quer ISBN 978-3-664-84128-8

Den Kalender gibt es bei

http://www.amazon.de

http://www.amazon.co.uk

http://www.amazon.fr

http://www.thalia.de

http://www.buchhandel.de

http://www.weltbild.de

http://www.buecher.de

http://www.ebook.de

http://www.calvendo.de

Sorbit kristallisieren mit einem Impfkristall.

Hallo liebe Freunde der Mikrokristalle,

ich hatte ihn schon angekündigt: den Zuckerersatzstoff Sorbit. Diesen Stoff kann man sich leicht, z.B. aus der Apotheke, beschaffen. In Lebensmitteln wird er als Ersatz für Zucker verwendet.

Hier zunächst die chemische Formel:

D-(-)-Sorbit

D-(-)-Sorbit

Chemisch ähnelt Sorbit den Zuckern D-Glucose und D-Fructose:

d-Glucose D-Fructose

D-Glucose und D-Fructose. Die Sternchen kennzeichnen die asymmetrischen Kohlenstoffatome.

In früheren Blogbeiträgen hatte ich schon über die Geduld berichtet, die man beim Kristallisieren von Zuckern benötigt. Auch Sorbit macht da keine Ausnahme. Der Stoff ist sehr gut löslich in Wasser und Wasser/Alkohol-Gemischen. Gut geeignet ist eine Mischung aus Wasser/Spiritus 1:1 oder besser noch Wasser/Isopropanol 1:1. Man gibt auf einen Objektträger einige Kristalle Sorbit und einen Tropfen Lösungsmittel. Die Kristalle lösen sich schnell auf. Man lässt das Lösungsmittel an einem staubfreien Ort bei Raumtemperatur verdunsten – und siehe da, es passiert nichts -. In aller Regel erhält man keine Kristallisation, auch nicht nach mehreren Tagen Wartezeit. Fast immer ist es erforderlich, die Kristallisation mit Hilfe eines Impfkristalls in Gang zu setzen. Dazu nimmt man die Probe, bei der das Lösungsmittel verdampft ist und versetzt sie mit einem ganz kleinen Sorbitkristall. Schon nach kurzer Zeit, meist nach wenigen Minuten, setzt die Kristallisation ein. Sie beginnt um den Impfkristall herum, wie die folgende Aufnahme zeigt, bei der 2 Impfkristalle zu sehen sind:

D-(-)-Sorbit mit Impfkristall.

D-(-)-Sorbit mit Impfkristallen.

Das „Animpfen“ ist im chemischen Labor eine übliche Praxis, um die Kristallisationsneigung von Stoffen, die sonst schwer kristallisieren, zu beschleunigen. Das Animpfen mit einem Impfkristall kann sowohl aus einer übersättigten Lösung, als auch aus einer Schmelze heraus erfolgen. Bei Sorbit funktioniert das ganz hervorragend aus der eingedampften Probe. Aus der Schmelze funktioniert es auch, aber nicht so gut. Bei den folgenden Aufnahmen wurden Sorbit-Kristalle auf einem Objektträger in einem Tropfen Wasser/Isopropanol 1:1 gelöst. Nach dem Verdampfen des Lösungsmittels wurde mit einem kleinen Sorbit-Kristall angeimpft. Für die Aufnahmen wurde zusätzlich zu den Polarisationsfiltern ein λ/4-Plättchen verwendet, da Sorbit farblich sonst nicht allzuviel hergibt.

D-(-)-Sorbit, fotografiert im polarisierten Licht, zusätzlich mit L/4-Plättchen.

D-(-)-Sorbit, fotografiert im polarisierten Licht, zusätzlich mit λ /4-Plättchen.

 

D-(-)-Sorbit

D-(-)-Sorbit, fotografiert im polarisierten Licht, zusätzlich mit λ /4-Plättchen.

Soviel für heute, liebe Freunde der Mikrokristalle. In meinem nächsten Blogbeitrag gibt es Mikrokristalle von einem anorganischen Stoff, den man sich sehr leicht, z.B. in der Apotheke, besorgen kann. Es ist Natriumcarbonat, auch Soda genannt.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

p.s. Weihnachten naht, wie wäre es mit einem Kalender voller Mikrokristalle als Geschenk?

catalog_577467

Titel: Surreale Farbwelten-Mikrokristalle

Autor: Dieter Schenckenberg

Hier die ISBN-Nummern:
Wandkalender 2017 DIN A4 quer ISBN 978-3-664-84126-4

Wandkalender 2017 DIN A3 quer ISBN 978-3-664-84127-1

Wandkalender 2017 DIN A2 quer ISBN 978-3-664-84128-8

Den Kalender gibt es bei

http://www.amazon.de

http://www.amazon.co.uk

http://www.amazon.fr

http://www.thalia.de

http://www.buchhandel.de

http://www.weltbild.de

http://www.buecher.de

http://www.ebook.de

http://www.calvendo.de