Woher bekommt man Chemikalien für Mikrokristalle und wie geht man damit um ?

Der Umgang mit Chemikalien erfordert höchste Sorgfalt und Vorsicht. Die Ratschläge und Hinweise des Autors erfolgen nach bestem Wissen. Dennoch übernimmt der Autor in keinem Fall für die Richtigkeit der Angaben, Hinweise und Ratschläge irgendeine Haftung!

Die Beschaffung von Chemikalien, auch in kleinen Mengen, ist vom Gesetzgeber, aus guten Gründen,  erheblich eingeschränkt worden. Der Chemikalienhandel verkauft heute nur noch an Selbständige, die einen Sachkundenachweis erbringen können, chemische Produkte.

Zum Glück gibt es schon in der Küche Substanzen wie Haushaltszucker und Traubenzucker, die für die Mikrokristallisation geeignet sind. In kleinen Mengen bekommt man auch in der Apotheke Substanzen wie Weinsäure, Zitronensäure und Vitamin C, die alle ganz hervorragende Kristalle bilden. (Man benötigt nicht mehr als jeweils 10 Gramm). Aus manchen Medikamenten wie z.B. Aspirin kann man mit recht einfachen Mitteln den Wirkstoff isolieren und fantastische Fotos damit machen.

Zwei Lösungsmittel werden benötigt, Wasser und Ethanol.

Leitungswasser ist völlig ungeeignet. In Drogeriemärkten und Apotheken erhält man für wenig Geld destilliertes Wasser. Destilliertes Wasser ist frei von Salzen, die den Kristallisationsprozess stören würden.

Ethanol ist die chemische Bezeichnung für Brennspiritus. Den bekommt man in Lebensmittelmärkten und Drogerieketten, ebenfalls für wenig Geld. Brennspiritus ist eine leicht entzündliche, brennbare Flüssigkeit, die bei 78 Grad Celsius siedet.

Mit Brennspiritus darf niemals in der Nähe von offenem Feuer gearbeitet werden. Er darf auch unter keinen Umständen mit offener Flamme wie einer Kerze oder Ähnlichem erwärmt werden. Das ist absolut verboten!

Flüssigkeiten dürfen nur in feuerfesten Glasgefäßen erwärmt werden, sonst besteht die Gefahr daß sie beim Erhitzen springen.

Wenn man Flüssigkeiten, auch Wasser, erhitzt, unbedingt Schutzbrille tragen und die Flüssigkeit ständig mit einem Glasstab oder Ähnlichem umrühren, da es beim Erhitzen zu sogenannten Siedeverzügen kommen kann. Die Flüssigkeit verdampft dabei schlagartig und spritzt im hohen Bogen zum Gefäß heraus, das passiert meist kurz vor Siedebeginn!

Gute Praxis ist es, Flüssigkeiten im Wasserbad zu erhitzen. Man füllt in einen Topf Wasser, stellt das zu erhitzende Gefäß in das Wasserbad und erwärmt den Topf  auf nichtoffener Flamme. Das funktioniert sehr gut, man sollte garnicht anders arbeiten.

Wenn auch keine giftigen Chemikalien zum Einsatzt kommen, Sauberkeit beim Arbeiten ist oberstes Gebot, besonders wenn man in der Küche tätig ist. Spiritus ist, weil steuerlich begünstigt, denaturiert. Man hat dem Spiritus in sehr geringer Menge einen Stoff zugesetzt, der extrem bitter schmeckt. Panscht man mit Spiritus in der Küche herum, kann das sehr unangenehme Folgen haben.

Was man an Gerätschaften benötigt, zeigt das folgende Bild:

Zubehör zum Züchten von Mikrokristallen

Zubehör zum Züchten von Mikrokristallen

Man benötigt 1 – 3 kleine Bechergläser zu 50 ml (Milliliter = qcm), 1 Glastrichter, (Durchmesser ca. 3-5 cm) 1 -3 Glasstäbe ca. 15 cm lang, 1 Pipette, 1 Spatel oder kleinen Löffel, Objektträger, Deckgläser.

Man bekommt all diese Dinge preiswert u.a. bei Amazon.

Nicht nur für Schüler: Es ist gute Praxis, über jeden Kristallisationsversuch ein Protokoll zu schreiben. Man sollte sich auch für die Fotos ein System der Aufbewahrung ausdenken. Im digitalen Zeitalter sind schnell eine Fülle von Fotos gemacht und schon bald kann man sie ohne Protokoll und systematischer Aufbewahrung nicht mehr zuordnen.

Soviel für heute, liebe Freunde der Mikrokristalle, im nächsten Beitrag ist Weinsäure die erste Substanz für herrlich farbige und formenreiche Mikrofotos.

Bis dahin eine gute Zeit.

H-D-S

„Umbau“ eines Schülermikroskops zum Polarisationsmikroskop

Hallo liebe Freunde der Mikrokristall-Fotografie.

Um Mikrokristalle so zu fotografieren, daß sie in prächtigen Farben erscheinen, benötigt man polarisiertes Licht.

Licht kann man sich als wellenförmige Schwingungen vorstellen. Diese Lichtwellen können horizontal oder vertikal oder in jeder anderen Ebene schwingen. Die folgende, etwas sehr simple Skizze soll das verdeutlichen. Sie zeigt eine horizontal und eine vertikal schwingende Welle, stellvertretend für das ganze Schwingungsspektrum:

Die rechts skizzierten Gitter sollen Polarisationsfilter darstellen. Polarisationsfilter lassen nur Licht einer Schwingungsebene passieren. Das obere Filter läßt nur den horizontal schwingenden Anteil des Lichts durch. Alle nicht horizontal schwingenden Lichtwellen werden zurückgehalten.

Im unteren Filter ist es umgekehrt. Hier werden nur die vertikal schwingenden Anteile des Lichts durchgelassen. Das untere Polarisationsfilter ist aber das gleiche Filter wie das obere, es ist nur um 90 Grad gedreht.

Packt man beide Filter zu einem Sandwich zusammen und zwar in den Durchlassebenen wie oben skizziert, wird alles Licht zurückgehalten. Dreht man dann das unteren Filter um 90 Grad, so daß seine Linien auch horizontal verlaufen, geht wieder horizontal schwingendes Licht durch die beiden Filter.

Die folgenden Fotos zeigen den Effekt. In den Fotos sind 2 Polarisationsfilter übereinander gelegt. Das untere ist eine Polarisationsfilter-Folie, das obere ein Polarisationsfilter für Fotoobjektive.

Im folgenden Bild sind die Filter so gedreht, daß sie Licht einer Schwingungsebene durchlassen:

_DSC6146_k

Lichtwellen einer Schwingungsebene passieren die beiden Filter

Dreht man eines der Filter um 90 Grad, das entspricht der Situation in der Skizze, kann kein Licht mehr die Filter passieren. Hier wurde das untere Filter gedreht:

Unteres Polarisationsfilter um 90 Grad gedreht, es passiert kein Licht mehr die Filter

Läßt man Licht durch ein Polarisationsfilter fallen, erzeugt man polarisiertes Licht, also Licht, das nur in einer Schwingungsebene schwingt. Es gibt chemische Substanzen, die in der Lage sind, die Ebene des polarisierten Lichts zu drehen. Bringt man solche Substanzen z. B. als Mikrokristalle zwischen 2 gekreuzte Polarisationsfilter, so werder sie vor schwarzem Hintergrund sichtbar. Durch sehr komplexe Vorgänge wie Doppelbrechung und  Interferenzerscheinungen entstehen zusätzlich prächtigen Farben.

Das Schülermikroskop muß also mit 2 Polarisationsfiltern ausgerüstet werden. Eine Polarisationsfilterfolie, (findet man im Internet, meist als 10×10 cm Folie, kostet ca. 15 Euro Stand 2015), wird entweder unter oder falls das nicht geht, auf den Objekttisch geklebt. Dieses Polarisationsfilter nennt man den Polarisator.

Polarisationsfilterfolie als Polarisator

Das zweite Polarisationsfilter, der Analysator, muß drehbar in der Nähe des Okulars angebracht werden. Hier zwei Varianten:

Ein passendes, drehbares Polarisationsfilter wird zwischen Kamera und Adapter geschraubt:

Adapter mit passendem Polarisationsfilter als Analysator

Das ist die teure Variante, aber es geht natürlich auch mit dem Schamstoffschlauch. Man klebt entweder ein passendes Polarisationsfilter oder Polarisationsfilterfolie auf den Schlauch. Man kann dann den ganzen Schlauch mit dem Analysator drehen. Für manche Digitalkameras gibt es aber auch passende aufschraubbare Filter, die sollten aber auch drehbar sein. Die schraubt man an das Kameraobjektiv und verbindet sie mit dem Schaumstoffschlauch wie früher beschrieben.

Polarisationsfilter auf Schaumstoffschlauch kleben

Polarisationsfilter auf Schaumstoffschlauch kleben

Es gibt sogenannte „Lineare Polarisationsfilter“ und „Zirkular-Polarisationsfilter“. Beide sind geeignet, Zirkular-Polarisationsfiltern müssen aber seitenrichtig eingesetzt werden. Man kann das testen, indem man beide Filter übereinander legt, sie ins Licht hält und eines der Filter dreht. Sind sie korrekt angeordnet sperren die Filter beim Drehen das Licht.

Als Beleuchtung eignen sich Tageslicht und Glühlampen. Leds sind ungeeignet.

So, liebe Frreunde der Mikrokristall-Fotografie, fototechnisch ist jetzt alles weitgehend geklärt. Im nächsten Beitrag geht es in die Küche zum Züchten der ersten Mikrokristalle.

Bis dahin eine schöne Zeit.

H-D-S

 

 

 

 

Adaptieren einer Digitalkamera an ein Schülermikroskop

Hallo liebe Freunde der Mikrokristall-Fotografie. Um Mikrofotos schießen zu können, muß die Kamera an das Mikroskop adaptiert werden. Am Beispiel eine Nikon Coolpix 4500 und einem Schülermikroskop werden 2 Möglichkeiten gezeigt. Die Nikon Coolpix 4500 ist eine ältere Digitalkamera, die … Weiterlesen

Mikrokristalle fotografieren mit einem Schülermikroskop

Kein Problem. Außer Spielzeugmikroskope die man in Spielwarengeschäften kaufen kann, sind praktisch alle Mikroskope geeignet. Man benötigt keine starken Vergrößerungen. Die meisten Bilder können mit 50 oder 100 facher Vergrößerung aufgenommen werden.

Mikroskope kann man grob in 3 Klassen einteilen: Ausbildungs-, Labor- und Forschungsmikroskope. Ein brauchbares Schülermikroskop kann man schon für etwa 200 EURO kaufen, Labormikroskope liegen deutlich oberhalb 1000 EURO und für ein Forschungsmikroskop kann man leicht mehr als 10000 EURO, je nach Ausstattung ausgeben.

Es gibt gute, gebrauchte Mikroskope zu kaufen. Im Internet findet man seriöse Händler. Auch bei ebay werden Mikroskope angeboten, es ist aber manchmal schwer zu beurteilen, in welchem Zustand sie sind.

Das unten abgebildete Mikroskop ist ein tschechisches Schülermikroskop älterer Bauart der Firma MeOpta. Es hat noch einen Spiegel anstelle einer elektrischen Beleuchtung, wie es heute üblich ist.

MeOpta AZ 2

MeOpta AZ 2

Das Scharfstellen erfolgt über das Hoch- und Runterfahren des Objektisches, wie bei allen modernen Mikroskopen. Früher wurde der Tubus zum Scharfstellen bewegt, was sehr unvorteilhaft war, wenn eine Kamera auf dem Tubus saß. Das Okular kann herausgenommen werden, das ist nützlich, wenn man mit einem Mikroskop-Adapter arbeitet, der eine eigene Optik besitzt. Beim Kauf eines älteren Mikroskops sollte man darauf achten, daß die Scharfstellung über das Bewegen des Objekttisches erfolgt.

Ein Hinweis für Schüler und Anfänger der Mikroskopie: Wer noch kein Mikroskop besitzt und das AZ-2  z.B.bei ebay entdeckt, guter Zustand vorausgesetzt, kann es beruhigt erwerben. Es besitzt sehr gute optische Eigenschaften. Das unten abgebildete Foto wurde mit diesem Instrument aufgenommen, damals noch mit einer analogen Kamera. Auf 50 x 60 cm vergrössert war die Aufnahme noch gestochen scharf.

Ascorbinsäure (VitaminC)

Ascorbinsäure (VitaminC)

Soviel für heute liebe Freunde der Mikrokristalle. Im nächsten Beitrag erfahren Sie, wie man eine Digitalkamera an ein Mikroskop adaptieren kann.

Bis dahin eine gute Zeit.

H-D-S