HDRI-Technik angewandt auf Fotos von Mikrokristallen III.

Hallo liebe Freunde der Mikrokristalle,

das Thema HDR (High Dynamic Range) möchte ich abschließen mit einer Simulation des Tone Mapping-Verfahrens. Wir erinnern uns: Beim Tone Mapping wird der Kontrastumfang eines Hochkontrastbildes (Farbtiefe 16-32 Bit) soweit verringert, daß es auf herkömmlichen Ausgabegeräten (Bildschirmen oder Druckern) dargestellt werden kann (Farbtiefe 8 Bit). Was bedeutet eigentlich Farbtiefe von 8 oder 16 Bit?

Um das zu verstehen, machen wir einen kleinen Ausflug in die Arbeitsweise der Computerspeicher. Stellen wir uns einen Computerspeicher vor, wie ein kariertes Blatt Papier. Jedes Karo ist ein Bit, das kleinste ansprechbare Speicherelement. Bits kennen keine Farben. Sie kennen nur zwei Zustände, ausgedrückt in den Zahlen „0“ und „1“. Wir können in ein Karo also entweder eine „0“ schreiben, oder eine „1“. Mehr geht nicht. Farben müssen also irgendwie in Kombinationen dieser 2 Ziffern dargestellt werden.

Digitale Bilder sind aus drei Grundfarben aufgebaut: Rot, Grün und Blau. Für jede dieser drei Grundfarben reservieren wir auf unserem karierten Blatt separate Speicherplätze, die wir Farbkanäle nennen. Es gibt also einen roten (R), einen grünen (G), und einen blauen (B) Farbkanal. Nehmen wir einmal an, wir reservieren für jeden Farbkanal genau je einen Speicherplatz, den wir mit einer „0“ oder einer „1“ belegen können. Schreiben wir z.B. in den roten Farbkanal eine „0“ so bedeutet das, er enthält keine Farbe. Schreiben wir eine „1“ hinein, enthält er die Farbe Rot. Analog können wir mit den beiden anderen Farbkanälen verfahren. Es ergeben sich dann daraus, mathematisch ausgedrückt,  ( 2 ^ 1 )^ 3 = 8 mögliche Farbkombinationen, wie im folgenden Bild dargestellt:

Darstellbare Farben bei 1 Bit Farbtiefe.

Darstellbare Farben bei 1 Bit Farbtiefe.

Stellen wir pro Farbkanal nur einen Speicherplatz zur Verfügung, so sprechen wir von einer Farbtiefe von einem Bit.

Erhöhen wir gedanklich die Farbtiefe auf 2 Bit. Dann stehen jedem Farbkanal 2 Speicherplätze zur Verfügung, die mit „0“ oder „1“ belegt werden können. Das bedeutet, daß wir jetzt die Farben in (2^2) = 4 unterschiedlichen Intensitäten darstellen könnten.

R                                          B

0 0                 0 0                    0 0

0 1                  0 1                    0 1

1 0                  1 0                    1 0

1 1                   1 1                    1 1

Kombiniert man die Farbabstufungen der Einzelfarben miteinander, ergeben sich (2^2)^3 = 64 verschiedene Farbkombinationen.

Der sRGB-Farbraum arbeitet mit einer Farbtiefe von 8 Bit pro Farbkanal. Somit ergeben sich pro Farbkanal 2^8 = 256 Farbabstufungen. Die 3 Kanäle wiederum miteinander kombiniert ergeben (2^8)^3 = 16.777.216 also rund 17 Millionen Farben. Und für einen 16-Bit-Farbraum kommen wir auf (2^16)^3 = 281.474.976.710.656, also rund 281 Billionen mögliche Farben. Gute Bildschirme im Amateurbereich können den sRGB-Farbraum zu 100% abdecken. Nur für den professionellen Gebrauch decken Bildschirme den vollen RGB-Farbraum ab.

Kehren wir von unserem kleinen Ausflug zurück zu unserem Ziel, das Tone Mapping zu simulieren. Wer Photoshop Elements besitzt, im vorliegenden Beispiel wurde Photoshop Elements 14 benutzt, kann diese Simulation durchführen. Es wird hierbei der Kontrastumfang des Bildes kontrolliert reduziert.

Photoshop Elements besitzt ein Camera-RAW-Plugin, mit dem man auch Bilder im JPG-Format öffnen kann. Durch Verschieben der Schwarz-, Weiss-, Tiefen-, Lichter- und Klarheit- Regler kann man ein Tone Mapping simulieren und erreicht durchaus beachtliche Ergebnisse.

Ich möchte mich nicht mit fremden Federn schmücken, diese Technik habe ich dem sehr lesenswerten Buch „Photoshop Elements 14“ von Jürgen Wolf entnommen. Legen wir also los:

Als Ausgangsbild habe ich wieder das gleiche Mikrofoto von Cumarin verwendet wie in den beiden vorausgegangenen Blog-Beiträgen. Die dunklen Bereiche sind hier viel dunkel.

02_Cumarin

Mikroaufnahme von Cumarin im polarisierten Licht.

In Camera-Raw das Bild öffnen:

 

JPG in Camera RAW

Öffnen einer JPG-Aufnahme in Camera RAW

 

Cumarin in Camera RAW

Mikroaufnahme von Cumarin in Camera RAW.

 

bild_02.1

Originalstellung der Regler.

Jetzt die Regler rechts im Bild folgendermaßen verstellen:

Schwarz ganz nach rechts auf +100

Weiß ganz nach links auf -100

Tiefen ganz nach rechts auf +100

Lichter ganz nach links auf -100

Klarheit ganz nach rechts auf +100

 

bils_03.1

 

Simuliertes Tone Mapping.

Simuliertes Tone Mapping.

Und hier die durch simuliertes Tone Mapping generierte Aufnahme:

Simuliertes Tone Mapping

Durch simuliertes ToneMapping (Dynamikkompression) verbesserte Mikroaufnahme von Cumarin.

Die Aufnahme hat doch gewaltig gewonnen.

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Blogbeitag zeige ich Euch, wie man schöne Mikrokristalle von Cumarin, einem Stoff, der u.a. im Zimt enthalten ist, erzeugen kann.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

HDRI-Technik angewandt auf Fotos von Mikrokristallen II.

Hallo liebe Freunde der Mikrokristalle.

In meinem letzten Blogbeitrag wurde mit Hilfe von Photoshop Elements aus drei unterschiedlich belichteten Mikroaufnahmen ein Bild manuell erzeugt, das in allen Teilen korrekt belichtet war. Der hohe Kontrastumfang des Motivs konnte mit einer Aufnahme allein nicht befriedigend bewältigt werden. Daher kam die DRI-Technik zum Einsatz.

Wir haben dabei mit Ebenen gearbeitet. Wer sich mit Ebenen nicht so gut auskennt, braucht nicht zu verzweifeln. In Photoshop Elements kann man  DRI  (Dynamic Range Increase) auch ohne Kenntnis der Ebenen-Technik anwenden. Zur Erinnerung: DRI läuft im 8-Bit-Farbraum ab, ist also kein echtes HDRI (High Dynamic Imaging), dessen Ergebnisse aber ohnehin auf normalen Bildschirmen gar nicht dargestellt werden können.

Also, frisch ans Werk, wir verwenden die gleichen drei unterschiedlich belichteten Mikrofotos vom Cumarin, wie im letzten Beitrag. Wir öffnen Photoshop Elements und lesen die 3 Aufnahmen ein.

image001

Die drei unterschiedlich belichteten Aufnahmen, in Photoshop Elements geöffnet.

 

Jetzt wechseln wir in den ASSISTENT-Modus:

image002

Wechsel in den ASSISTENT-Modus.

Jetzt oben PHOTOMERGE anklicken:

image003

PHOTOMERGE anklicken.

In das Bild PHOTOMERGE-EXPOSURE klicken:

image004

Klicken auf „ALLE ÖFFNEN“

 

Jetzt werden die geöffneten drei Bilder verarbeitet und zusammengeführt:

image005

Verarbeitung der 3 Aufnahmen.

Rechts sind noch einige Schieber um eventuell den letzten Schliff zu geben. Und hier ist dann das Endergebnis:

image008

Cumarin DRI-Aufnahme aus drei unterschiedlichen Belichtungen zusammengesetzt. Bearbeitung mit Photoshop Elements

Hier nochmal zum Vergleich: Eine der 3  Aufnahmen, mit der von der Kamera vorgeschlagenen Belichtung, ohne weitere Bearbeitung.

Cumarin Belichtungszeit 1/6s

Cumarin
Belichtungszeit 1/6s

Ich hatte es schon erwähnt, es gibt ein Programm „Photomatix Pro“, das echte HDRI-Technik anwendet. Wiederum mit den 3 unterschiedlich belichteten Cumarin-Aufnahmen, zeige ich ein paar Beispiele, die mit diesem Programm erzeugt wurden. Die 3 Aufnahmen wurden im RAW-Format in das Programm eingelesen. Man kann mit Photomatix Pro Aufnahmen auch sehr verfremden. Ich persönlich wende das Programm zwar gerne, aber sehr maßvoll an. Beim Arbeiten mit solchen Programmen ist es mein Ziel, den Eindruck, den ich beim Betrachten durch das Mikroskop habe im fertigen Bild möglichst getreu wiederzugeben. Man kann natürlich auch einen ganz anderen Ansatz vertreten, vielleicht wenn man künstlerische Ambitionen besitzt. Hier also ein paar Beispiele, immer mit den gleichen Ausgangsbildern, mit Photomatix Pro bearbeitet:

151219_0001hdi_blogAnd2more_Painterly 2

Cumarin HDRI-Aufnahme aus drei unterschiedlichen Belichtungen zusammengesetzt. Bearbeitung mit Photomatix Pro.

151219_0001hdi_blogAnd2more_Creative 3

Cumarin HDRI-Aufnahme aus drei unterschiedlichen Belichtungen zusammengesetzt. Bearbeitung mit Photomatix Pro

151219_0001hdi_blogAnd2more_Surreal

Cumarin HDRI-Aufnahme aus drei unterschiedlichen Belichtungen zusammengesetzt. Bearbeitung mit Photomatix Pro

 

Die letzten 3 Aufnahmen sind echte HDRI-Bilder, die aber wie im vorigen Blogbeitrag beschrieben, wieder auf eine Farbtiefe von 8-Bit pro Farbkanal heruntergerechnet wurden, da mehr auf normalen Bildschirmen nicht darstellbar ist.

Soviel für heute liebe Freunde der Mikrokristalle.

Im nächsten Blogbeitrag zeige ich, wie man mit Photoshop Elements große Kontrastumfänge von Aufnahmen im RAW-Format durch Simulation von HDRI kontrolliert reduzieren kann.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

HDRI-Technik angewandt auf Fotos von Mikrokristallen I.

Hallo liebe Freunde der Mikrokristalle.

High Dynamic Range Imaging ist heute unser Thema. Da es sehr umfangreich ist, möchte ich es in zwei Blogbeiträge unterteilen.

Wer kennt es nicht, ein Motiv besitzt einen Kontrastumfang, der die Möglichkeiten des Kamera-Sensors übersteigt. Belichtet man korrekt auf die hellsten Bereiche versinken die dunklen ins Schwarze und belichtet man korrekt auf die dunklen Bereiche sieht man die hellen Bereiche als weiße Flächen ohne jegliche Zeichnung. Diese Erfahrung macht man manchmal auch beim Fotografieren von Mikrokristallen im polarisierten Licht. Was kann man tun?

Die HDRI-Technik liefert die Lösung. Sie erzeugt Hochkontrastbilder, die große Helligkeitsunterschiede detailreich wiedergeben. Dafür werden allerdings Spezialkameras benötigt. Man kann aber auch über Belichtungsreihen mit herkömmlichen Kameras den Dynamikumfang erweitern.

Echte HDR-Aufnahmen besitzen eine Farbtiefe von 16 oder 32 Bit pro Farbkanal. Normale Bildschirme können einen so großen Kontrastumfang gar nicht darstellen. Sie schaffen gerade mal 8 Bit pro Farbkanal. Es können auch nicht alle Formate genutzt werden. JPG zum Beispiel arbeitet nur mit 8 Bit pro Farbkanal. Daher werden Hochkontrastbilder in einem zweiten Schritt wieder auf 8 Bit pro Farbkanal heruntergerechnet. Dieses Verfahren wird Tone Mapping oder Dynamikkompression genannt. Das erscheint vielleicht etwas verwirrend. Erst erzeugt man Bilder mit einem hohen Dynamikumfang und dann reduziert man ihn wieder. Aber die Dynamikkompression wird so durchgeführt, daß alle bildwichtigen, korrekt belichteten Bereiche erhalten bleiben. Es werden allerdings Helligkeitswerte und Farben dabei oft so verändert, daß eine Nachbearbeitung erforderlich ist.

Der HDRI-Prozess besteht somit aus 3 Schritten, der Erzeugung eines Hochkontrastbildes, dem Tone Mapping und der Nachbearbeitung. Diesen relativ aufwendigen Gesamtprozess beherrschen nicht alle Bildbearbeitungsprogramme. HDRI wird von Photoshop ab CS2 unterstützt, im Gegensatz zu Photoshop Elements das diesen Prozess, auch in neuster Version, nicht kennt. Es gibt Spezialprogramme wie Photomatix Pro mit denen man HDR-Bilder erzeugen kann, die dann von dem Programm durch Tone Mapping wieder heruntergerechnet werden und falls erforderlich, kann man sie mit Photomatix Pro noch nachbearbeiten.

Ein anderes Verfahren, DRI (Dynamic Range Increase) genannt, liefert ähnliche Resultate wie HDRI. Dynamic Range Increase  kann mit jedem Bildbearbeitungsprogramm durchgeführt werden, das mit Ebenen arbeitet und einen Zauberstab besitzt, also auch mit Photoshop Elements.

DRI arbeitet mit 8 Bit pro Farbkanal. Daher ist kein anschließendes Tone Mapping  erforderlich. Ich möchte versuchen, das Prinzip einigermaßen verständlich zu beschreiben, damit man es mit jedem Bildbearbeitungsprogramm durchführen kann. Anschließend folgt ein konkretes Beispiel mit Photoshop Elements.

Zunächst die grundlegende Vorgehensweise: Man nimmt 3-5 Mikrofotos mit unterschiedlichen Belichtungen auf. Dabei sollten 1-2 Zeitstufen zwischen den einzelnen Aufnahmen liegen. Der Vorteil bei mikroskopischen Bildserien von Kristallen ist, daß sie deckungsgleich sind und normalerweise keine Bewegung zwischen den Aufnahmen stattgefunden hat. Die Aufnahmen können im JPG-Format aufgenommen sein. Nehmen wir an, es liegen 3 Aufnahmen vor.

Man liest sie in das Bildbearbeitungsprogramm ein. Es muß, wie gesagt, die Ebenentechnik unterstützen. Jetzt legt man jedes Bild in eine Ebene. Das dunkelste nach ganz unter, das nächst hellere darüber, das hellste nach oben. Jetzt wird die oberste Bildebene aktiviert. Darin werden die überbelichteten Bereiche mit dem Zauberstab eingegrenzt. Dabei den Zauberstab so einstellen, daß nur diese Bereiche erfaßt werden. Man löscht den markierten Bereich, und der in der 2.Ebene genau darunter  liegende Bereich wird sichtbar und ersetzt den gelöschten Bereich. Jetzt aktiviert man die 2. Ebene und kreist mit dem Zauberstab, falls notwendig, weitere zu helle Bereiche ein, dabei muß die Intensität des Zauberstabs verringert werden. Nach Löschen dieser Bereiche werden die darunterliegenden korrekt belichteten Bildteile sichtbar und ersetzen wiederum die gelöschten Bereiche. Jetzt haben wir eine in allen Teilen korrekt belichtete Aufnahme und wir führen die neu eingefügten Bildteile mit der oberen Ebene zusammen und speichern sie ab.

Hier gleich ein praktisches Beispiel, ausgeführt mit Photoshop Elements. Vom Cumarin wurden 3 Aufnahmen unter dem Mikroskop im polarisierten Licht aufgenommen.

Cumarin Belichtungszeit 1/1.6s

Cumarin
Belichtungszeit 1/1.6s

Einige Bereiche dieser Aufnahme sind komplett überbelichtet.

 

Cumarin Belichtungszeit 1/6s

Cumarin
Belichtungszeit 1/6s

Diese Aufnahme wurde mit der von der Kamera vorgeschlagenen Belichtung aufgenommen. Die dunklen Bereiche sind viel zu dunkel, einige kleine Bereiche im helle Teil sind noch zu hell.

 

Cumarin Belichtungszeit 1/25s

Cumarin
Belichtungszeit 1/25s

Hier sind auch die hellsten Teile korrekt belichtet, die dunklen Teile sind fast nicht mehr sichtbar.

So, und nun gehen wir in Photoshop Elements, stellvertretend für jedes beliebige Bildbearbeitungsprogramm.

Zunächst laden wir die drei Aufnahmen:

Bild01

Mit [Fenster], [Bilder],[Nebeneinander], werden die Bilder nebeneinander gestellt.

Bild02

Wir sehen ganz rechts, blau unterlegt, die Hintergrundebene. Wichtig, dieses muß die dunkelste Aufnahme sei. darüber legen wir jetzt die mittlere Ebene, also das zweitdunkelste Bild. Es ist unten links. Dazu verwenden wir das Verschiebewerkzeug. Wir halten die Steuerungstaste gedrückt, klicken mit dem Verschiebewerkzeug in das untere linke Bild und ziehen es auf das Hintergrundbild. Rechts sehen wir jetzt, daß die neue Ebene 1 entstanden ist.

Bild03

Jetzt gehen wir mit dem Verschiebewerkzeug in das linke obere Bild, es ist das hellste, und schieben es ebenfalls unter Drücken der Steuerungstaste über das rechte Bild. Rechts sehen wir jetzt, daß die Ebene 2 entstanden ist.

Bild04

 

Es liegen jetzt 3 Ebenen übereinander. Das dunkelste Bild mit der Belichtung 1/25s ist die Hintergrundebene. Darüber, Ebene 1 das Bild mit der Belichtung 1/6s und ganz oben, Ebene 2 das hellste Bild 1/1.6s.

Die beide linken Bilder können wir jetzt entfernen durch klicken auf das kleine Kreuz, rechts oberhalb der Bilder. Dann sieht unser Bildschirm so aus:

Bild05

Aus dem jetzt oben liegenden Bild (Ebene 2) werden die überbelichtete Bereiche mit Hilfe des Zauberstabs entfernt. Man stellt seine Intensität so ein, daß nur die hellen Bereiche isoliert werden. In diesem Fall wurde ein Wert von 60 gewählt. Man markiert die überbelichteten Bereiche, indem man mit dem Zauberstab in den hellsten Teil klicken. Dann [Ebene], [Ebenenmaske], [Alles Ausblenden] drücken um den markierten Bereich zu löschen.

Bild06

 

Jetzt erscheint an Stelle des mit dem Zauberstab herausgeschnittenen Bereichs der genau darunter liegende aus der Ebene 1.

 

Bild07

 

Jetzt, ganz wichtig, die mittlere Ebene 1, rechts im Fenster anklicken um sie zu aktivieren. Die Farbe wechselt von weiß nach blau. Mit dem Zauberstab den noch zu hellen Bereich anklicken. Die Intensität des Zauberstabs muß dabei verringert werden. In diesem Beispiel habe ich 15 gewählt. Wenn wir den isolierten Bereich, wie gerade beschrieben entfernen, wird der darunter liegende aus der Hintergrundebene sichtbar. Man sieht, das die fast weißen Anteile jetzt gelb geworden sind.

 

Bild08

Mit [Ebene] [Sichtbar auf eine Ebene reduzieren] fügen wir alle zu einer Ebene zusammen und haben jetzt das fertige Bild.

 

Bild09

 

Bild10

 

Wir sehen jetzt rechts, daß nach dem Zusammenführen nur noch eine Ebene vorhanden ist, die wir jetzt als Bild abspeichern können.

Und hier die bearbeitete Aufnahme.

 

03_Cumarin

Sie entspricht weitgehend dem Bild, daß man im Mikroskop sehen kann. Die Bezeichnung DRI (Dynamic Range Increase) ist etwas irreführend. Der Dynamikbereich der Aufnahme wurde ja nicht wirklich erhöht. Er beträgt weiterhin 8 Bit pro Farbkanal. Das hier beschriebene Verfahren kann man, wie schon erwähnt, mit jedem Bildbearbeitungsprogramm durchführen. Dabei können die einzelnen Schritte anders aussehen, das Prinzip ist aber immer gleich. Man kann das Verfahren in Photoshop Elements und in anderen Programmen auch automatisch ablaufen lassen. Dann hat man aber nicht die Kontrolle, die man bei der manuellen Bearbeitung hat. Das untere Photo ist ein „echtes“ HDR-Photo. Es wurde mit Photomatix Pro bearbeitet. Es wurden die gleichen Ausgangsfotos verwendet, allerdings im RAW-Format.

151219_0001hdi_blogAnd2more_Photographic

Soviel für heute, liebe Freunde der Mikrokristalle. Mit der Vorstellung von Photmatix Pro, werde ich das Thema HDRI im nächsten Blogbeirag fortsetzen.

Bis dahin wünsche ich eine gute Zeit.
H-D-S

 

 

 

 

 

 

 

 

 

Anisotropie und Optische Aktivität.

 Hallo liebe Freunde der Mikrokristalle,

in meinem letzten Blogbeitrag im November habe ich beschrieben, wie es zu den farbigen Bildern von Mikrokristallen im polarisierten Licht kommt. Es waren die anisotropen Eigenschaften vieler Kristalle, die für die prächtigen Interferenzfarben verantwortlich waren. Eine Rolle spielte dabei die Fähigkeit anisotroper Kristalle, linear polarisierte Lichtwellen aufzuspalten, Teilwellen abzulenken und dabei die Polarisationsebenen zu drehen.

Es gibt auch chemische Verbindungen, die in der Lage sind, die Ebene des polarisierten Lichts zu drehen. Wir nennen sie optisch aktiv. Mikrokristalle optisch aktiver Verbindungen ergeben häufig schöne Farbwirkungen unter dem Mikroskop im polarisierten Licht.

Vergleicht man Bilder optisch aktiver chemischer Verbindungen mit nicht optisch aktiven, sieht man aber keine Unterschiede in der Farbigkeit. Ich habe die optisch aktive D-Weinsäure mit der nicht optisch aktiven Zitronensäure verglichen.

D-Weinsäure besitzt 2 asymmetrische Kohlenstoffatome und ist somit optisch aktiv.

D-Weinsäure

D-Weinsäure
Sie besitzt 2 asymmetrische Kohlenstoffatome.

Zitronensäure verfügt über keine Asymmetriezentren und ist somit auch nicht optisch aktiv.

 

Zitronensäure

Zitronensäure
Verfügt über kein Asymmetriezentrum.

Die Mikrokristalle beider Säuren ergeben unter dem Mikroskop im polarisierten Licht sehr schöne farbige Kristalle.

Weinsäure_01

Mikrokristalle der D-Weinsäure unter dem Mikroskop.
Fotografiert im polarisierten Licht.

 

Weinsäure Nr. 08

Mikrokristalle der D-Weinsäure unter dem Mikroskop.
Fotografiert im polarisierten Licht.

 

Zitronensaure

Mikrokristalle der Zitronensäure.
Fotografiert unter dem Mikroskop im polarisierten Licht.

 

 

Cirtonensäure01_k

Mikrokristalle der Zitronensäure
Fotografiert unter dem Mikroskop im polarisierten Licht.

Anisotropie ist eine Eigenschaft die im Kristallbau begründet ist. Die optische Aktivität ergibt sich im Gegensatz dazu aus dem Molekülbau. Daher verschwinden anisotrope Eigenschaften auch mit dem Auflösen des Kristalls. Die optische Aktivität bleibt hingegen auch in Lösungen erhalten.

Das liebe Freunde der Mikrokristalle, sollte eine kleine Ergänzung zu meinem vorangegangenen Blogbeitrag sein, in dem es um die Frage ging, warum Mikrokristalle im polarisierten Licht unter dem Mikroskop so farbenprächtig sind.

In meinem nächsten Beitrag geht es um HDR-Aufnahmen (High Dynamic Range).

Bis dahin wünsche ich eine gute Zeit.

H-D-S

p.s. in früheren Blogbeiträgen habe ich Begriffe wie „polarisiertes Licht“, „optische Aktivität“ und „asymmetrische Kohlenstoffatome“ näher beschrieben, einfach mal bis April 2015 zurückgehen.

 

 

Warum ergeben Mikrokristalle im polarisierten Licht farbige Bilder?

Hallo liebe Freunde der Mikrokristalle,

in meinem letzten Blogbeitrag hatte ich die Glutaminsäure angekündigt.

Da es sich heute um meinen 30. Blogbeitrag handelt, habe ich mir aber ein besonderes Thema vorgenommen. Ich möchte am Beispiel der Glutaminsäure beschreiben, warum wir unter dem Mikroskop im polarisierten Licht so eindrucksvolle farbenfrohe Bilder sehen und fotografieren können. Dabei will ich  versuchen, das Thema ohne Mathematik und allzuviel Physik und Chemie zu behandeln. Aber es sei gesagt, ganz ohne geht es nicht, das Thema ist etwas sperrig.

Wir wissen: Ein Mikroskop mit Polarisationseinrichtung wird benötigt. Sie besteht aus 2 Polarisationsfiltern. Eines befindet sich unter dem Objekt, das andere darüber.

Mikroskop mit Polarisationseinrichtung.
Das folgende Foto zeigt ein Mikroskop mit solch einer Polarisationseinrichtung:

Polarisationsmikroskop

Mikroskop mit Polarisationseinrichtung.

Ein Polarisationsfilter, der Polarisator, befindet sich über der Beleuchtungseinrichtung. An dem kleinen Hebel kann man das Filter drehen. Oberhalb des Objektivrevolvers sieht man ein zweites Polarisationsfilter, den Analysator. Beide Polarisationsfilter sehen wir in der nächsten Abbildung etwas genauer:

Polfilter

Polarisator und Analysator.

Der Analysator wird in das Mikroskop eingeschoben. Solch eine Anordnung wird „Orientierende Polarisationseinrichtung“ genannt. Man kann damit im Gegensatz zu anspruchsvolleren Einrichtungen keine Polarisationswinkel messen.

Wir wissen also jetzt, ein normales Lichtmikroskop muß durch 2 Polarisationsfilter ergänzt werden, damit wir die schönen farbigen Bilder erhalten. Das hilft uns aber noch nicht viel weiter.

Um zu verstehen, warum die Mikrokristalle so schön farbig werden, wollen wir Schritt für Schritt den Weg des Lichts durch das Mikroskop verfolgen und einige Experimente dazu durchführen. Ich verspreche Euch eine interessante Reise.

Wir beginnen mit der Beleuchtung des Mikroskops und müssen uns zunächst fragen, welche Eigenschaften Licht eigentlich besitzt. Ich will hier kein Physikbuch schreiben und beschränke mich darum auf die für unsere Betrachtung notwendigen Eigenschaften:

1.Licht besitzt Wellencharakter.
Früher hat man angenommen, daß Licht Strahlencharakter besitzt. Viele optische Erscheinungen lassen sich aber nicht mit dem Strahlencharakter erklären. Die Wirkungsweise von Polarisationsfiltern z.B.  läßt sich sehr gut beschreiben, wenn man dem Licht Wellencharakter zuordnet, wie wir später sehen werden.

2. Farbloses Licht besitzt ein ausgeglichenes Wellenspektrum.
Das sichtbare Licht besitzt ein  Lichtwellenspektrum von ca. 380 nm bis ca. 780 nm. Wenn  eine Lichtquelle all diese Wellenlängen aussendet, empfinden wir das Licht als farblos. Auf Sonnenlicht z.B. trifft das zu. Entfernt man aus dem Lichtspektrum eine Wellenlänge, z.B. die der Farbe blau, so empfinden wir das Licht in der Komplementärfarbe gelb.

3. Lichtwellen schwingen in verschiedenen Ebenen.
Lichtwellen schwingen in verschiedenen Ebenen. Es gibt dabei keine bevorzugte Schwingungsebene, alle Ebenen sind vorhanden.Die folgende Skizze zeigt, als Ausschnitt aus dem gesamten Ebenenspektrum,  eine horizontal und eine vertikal schwingende Welle.

 

Skizze einer horizontal und einer vertikal schwingenden Welle Auch die Lampe in unserem Mikroskop liefert ein Licht, das in allen möglichen Ebenen schwingt und dessen Wellenspektrum ziemlich ausgeglichen ist.

Wir müssen für unsere weiteren Betrachtungen die beiden Aspekte, Schwingungsebenen, Wellenspektrum besonders im Auge behalten.

Starten wir unser erstes Experiment: Auf einem Objektträger habe ich Glutaminsäure-Kristalle gezüchtet. Wir legen sie ohne Polarisationsfilter unter das Mikroskop:

Glutaminsäure ohne Filter

Glutaminsäure-Kristall ohne Polarisationseinrichtung
Belichtungszeit 1/13 s

Der Glutaminsäure-Kristall wirkt völlig unspektakulär, Farben sind kaum sichtbar.

Jetzt legen wir den Polarisator auf die Lampe des Mikroskops und wiederholen die Aufnahme mit der gleichen Belichtungszeit von 1/13 s.

Glutaminsäure_mit_Polarisator

Glutaminsäure_Kristall mit Polarisator
Belichtungszeit 1/13 s

Auch hier sind kaum Farben erkennbar. Die Aufnahme ist stark unterbelichtet. Was ist passiert? Hier kommen wir zur Wirkungsweise von Polarisationsfiltern.

Polarisationsfilter.
Betrachten wir nochmal die obige Skizze mit den Wellen. Daneben sind 2 Gitter gezeichnet. Sie sollen das Prinzip von Polarisationsfiltern darstellen. Polarisationsfilter besitzen solche Gittereigenschaften. Bei dem einen Gitter verlaufen die Gitterlinien horizontal. Dieses Filter läßt nur Lichtwellen die in horizontaler Richtung schwingen passieren. Alle anderen Lichtwellen werden gesperrt. Dreht man das Filter um 90 Grad, haben wir vertikale  Gitterlinien. Entsprechend läßt das untere Filter nur vertikal schwingende Lichtwellen durch. Legt man 2 Polarisationsfilter übereinander, und zwar so, daß die Gitter gekreuzt sind, werden keine Lichtwellen mehr durchgelassen.

Wir schauen uns das auf den folgenden Bildern an:

Im ersten Bild sehen wir eine Polarisationsfilterfolie, auf der ein zweites Polarisationsfilter liegt. Die Gitter beider Filter sind gleich ausgerichtet. Somit kann Licht einer Schwingungsebene die Filter passieren.

 

zwei Polarisationsfilter mit gleicher Gitterorientierung.

Zwei Polarisationsfilter mit gleicher Gitterorientierung.

 

In der nächsten Aufnahme ist die untere Polarisationsfilterfolie um 90 Grad gedreht. Die Gitter sind jetzt gekreuzt und lassen  kein Licht mehr passieren. Verwendet man hochwertige Polarisationsfilter und kreuzt sie, werden über 90% der Lichtwellen zurückgehalten.

Unteres Polfilter um 90 Grad gedreht, es passiert kein Licht mehr die Filter

Unteres Polarisationsfilter um 90 Grad gedreht, die gekreuzten Filter lassen kein Licht mehr passieren.

Soweit der kleine Einschub zu Wirkungsweise von Polarisationsfiltern. Kommen wir zurück zu unserm Glutaminsäure-Kristall.

Jetzt ist auch klar, was bei der zweiten Kristall-Aufnahmen, die mit dem Polarisator über der Mikroskoplampe aufgenommen wurde, passiert ist. Der Polarisator hat nur Lichtwellen einer Schwingungsebene passieren lassen. Man sagt, das Licht wurde linear polarisiert. Da nur ein Teil des Lampenlichts durch das Gitter des Polarisators gegangen ist, wurde die Aufnahme bei gleicher Belichtungszeit wie ohne Filterung stark unterbelichtet.

Trotz Polarisator haben wir aber noch kein farbiges Bild erhalten. Polarisiertes Licht alleine schafft also noch nicht die wunderschönen farbigen Aufnahmen.

Schieben wir nun das zweite Polarisationsfilter, den Analysator in den Strahlengang und sorgen dafür, das die Gitter gekreuzt sind. Die folgende Aufnahme wurde mit den gekreuzten Filtern aufgenommen.

 

Glutaminsäure_mit_gekreuzten Polfiltern

Glutaminsäure-Kristall zwischen gekreuzten Poarisationsfiltern.

 

WOW, jetzt haben wir es. Sind also die beiden gekreuzten Polarisationsfilter entscheidend für das farbige Bild?

Merkwürdig, wir haben doch gerade festgestellt, das gekreuzte Polarisationsfilter Lichtwellen vollständig sperren. Warum sehen wir dann plötzlich den farbigen Kristall? Schauen wir das Bild genau an. Um den Kristall herum ist alles schwarz. Das war zu erwarten, denn die beiden Polarisationsfilter sind gekreuzt und sperren das Licht vollständig. Der Kristall ist aber sichtbar. Das ist nur möglich, wenn er die Ebene des polarisierten Lichtes gedreht hat. Soweit so gut, aber wenn er nur die Ebene des polarisierten Lichts gedreht hätte, warum ist er dann auch noch zusätzlich farbig? Fragen über Fragen.

Machen wir ein zweites Experiment: Ich habe Kochsalz Kristalle (NaCl) auf einem Objektträger gezüchtet. Sie sind nicht sehr schön, aber hier geht es ja mehr um die Funktion. Zunächst eine Aufnahme ohne Polarisationsfilter.

 

Kochsalz ohne Filter

Kochsalz (Natriumchlorid) ohne Polarisationsfilter.

Und jetzt die gleiche Aufnahme mit gekreuzten Polarisationsfiltern:

 

Kochsalz mit Polfiltern.

Kochsalz-Kristalle mit gekreuzten Polarisationsfiltern.

Dieses Ergebnis entspricht unseren Erwartungen. Bei gekreuzten Polarisationsfiltern wird der Lichtdurchgang vollständig gesperrt, wir sehen praktisch nichts. Im Gegensatz zur Glutaminsäure, ist auch kein Kristall zu sehen.

Was schließen wir aus den bisherigen Experimenten? Offensichtlich gibt es Kristalle, welche die Ebene des polarisierten Lichtes drehen können, und somit auch bei gekreuzten Filtern sichtbar werden. Darüber hinaus sind sie sogar  noch farbig. Andere Kristalle wiederum besitzen diese Eigenschaften nicht. Wir müssen uns also etwas näher mit den Eigenschaften von Kristallen befassen.

Ich möchte an dieser Stelle nicht tiefer in den chemisch/physikalischen Aufbau von Kristallen einsteigen, (vielleicht in einem späteren Blogbeitrag), nur soviel: Es gibt zwei prinzipielle Arten von Kristallen:

1.Isotrope Kristalle.
Natriumchlorid (Kochsalz) ist ein Beispiel eines isotropen Kristalls. Es kristallisiert in Form von Würfeln. Wenn man  elektrischen Strom durch den Würfel leitet um die Leitfähigkeit von Natriumchlorid zu messen, ist es egal, ob man  z.B. in horizontaler oder in vertikaler Richtung misst. Die elektrische Leitfähigkeit ist bei Natriumchlorid unabhängig von der Durchleitungsrichtung.

Bild1

Bei isotropen Kristallen verhalten sich Lichtwellen unabhgängig von der Durchleitungsrichtung.

Auch wenn linear polarisiertes Licht Natriumchlorid-Kristalle passiert, verhält es sich von der Durchgangsrichtung völlig unabhängig. Kristalle, deren Moleküle oder Ionen sehr regelmäßig angeordnet sind, zeigen diese Eigenschaft. Stoffe, die sich optisch in allen Richtungen gleich verhalten, nennt man isotrop.

2. Anisotrope Kristalle.
Die Kristalle der Glutaminsäure und sehr viele andere Kristalle zeigen ein anderes Verhalten. Bei ihnen ist es nicht egal, ob die Durchleitungsrichtung horizontal oder vertikal oder irgend eine andere Richtung ist. Die Ursache liegt im chemisch/physikalischen Aufbau der Kristalle begründet. Je nach Durchleitungsrichtung erhält man ein anderes Resultat. Kristalle deren optisches Verhalten richtunsabhängig ist, nennt man anisotrop.

Wenn linear polarisiertes Licht einen Glutaminsäure-Kristall passiert, wird es je nach Eintrittsrichtung aufgespalten. Ein Teil passiert den Kristall unverändert, bei dem anderen Teil wird die Schwingungsebene  um 90 Grad gedreht und auch die Durchgangsrichtung  wird geändert. Verfolgen wir den Weg einer Welle:

Anisotropes Medium

Aufspaltung und Drehung einer Lichtwelle im anisotropen Medium

Die schwarze Teilwelle passiert den Kristall unverändert, die rote Teilwelle ändert ihre Richtung und wird um 90 Grad gedreht. Durch die Richtungsänderung wird der Weg der roten Welle länger, es tritt ein Gangunterschied zwischen beiden Teilwellen ein, symbolisiert durch den kürzeren roten Strich.

Kehren wir an dieser Stelle zu unserem zweiten Foto, der unterbelichteten Aufnahme des Glutaminsäure-Kristalls zurück. Hier haben wir die Situation, wie gerade beschrieben. Beim Durchtritt durch den anisotropen Glutaminsäure-Kristall werden die Lichtwellen aufgespalten. Ein Teil der Wellen passieren den Kristall unverändert, bei dem anderen Teil wird die Schwingungsebene um 90 Grad gedreht und der Weg durch den Kristall wird länger. Es entsteht ein Gangunterschied.

Jetzt kommt das zweite Polarisationsfilter, der Analysator ins Spiel. Wir haben gesehen, das erst mit dem Zuschalten des Analysators das Bild bunt wird. Wie ist das zu erklären?

Es bleibt uns nicht erspart, liebe Freunde der Mikrokristalle, um eine Erklärung dafür zu finden, müssen wir noch ein weiteres Verhalten von Lichtwelle besprechen, die Interferenz.

Interferenz
Wenn wir an einem Teich mir ruhiger Wasseroberfläche stehen und werfen, sagen wir im Abstand von einem Meter, 2 Steine gleichzeitig ins Wasser, dann sehen wir, wie sich 2 Wellen ausbreiten und sich dann überlagern. Bei der Überlagerung von Wellen kommt es zu teilweiser Abschwächung, Auslöschung und Verstärkung. Um das zu verstehen,  kommen wir zurück auf die Skizze mit dem Gangunterschied und der Ebenendrehung von Wellen.

Wir haben gesehen, daß Lichtwellen bei dem Aufspalten ihre Richtung ändern, einen längeren Weg durch den Kristall zurücklegen müssen und daher auch zeitlich verzögert aus dem Kristall wieder austreten. Sie erleiden damit einen Gangunterschied. Der Gangunterschied ist dafür verantwortlich, daß sich Wellen beim Überlagern ausgelöscht werden können, wie die folgende Skizze verdeutlichen soll.

Totalauslöschung

Totalauslöschung zweier überlagerter Wellen.

 

Wir sehen zwei überlagerte Wellen. Hier beträgt der Gangunterschied der  roten Welle gegenüber der schwarzen eine halbe Wellenlänge. Wo die schwarze Welle ihe maximale Auslenkung erreicht, liegt das Minimum der roten Welle. Addiert löschen sie sich aus. Abhängig vom Gangunterschied können auch nur Abschwächungen oder auch Verstärkungen eintreten. Das ganze nennen wir Interferenz. Wellen können aber nur  interferieren, wenn sie etwa die gleiche Wellenlänge besitzen und  in einer Ebene schwingen.

Aufgabe des Analysators
Nachdem die Lichtwellen im anisotropen Glutaminsäurekristall aufgespalten wurden, Richtungsänderungen und Ebenendrehungen erfahren haben, treten sie nun durch das zweite Polarisationsfilter. Hier werden aber nur Lichtwellen gleicher Schwingungsebene durchgelassen. Es sind dies die Lichtwellen, die die gleiche Orientierung wie der Analysator besitzen. Und da sie nun alle in einer Ebene schwingen, Gangunterschiede besitzen, können sie auch interferieren.  Dabei werden manche Wellen vollkommen ausgelöscht, andere abgeschwächt oder verstärkt.  Das Lichtspektrum ist jetzt nicht mehr ausgeglichen, was ja die Voraussetzung für farbloses Licht ist, außerdem ist es um 90 Grad gedreht. Der Kristall wird sichtbar und wir sehen seine prächtigen Interferenz-Farben.

Es war ein ziemlich langer Weg bis hierhin, liebe Freunde der Mikrokristalle, darum kommen zur Entspannung jetzt noch zwei Fotos von Glutaminsäure-Kristallen. Ganz nebenbei, ich habe hier nicht die optische Aktivität erwähnt, denn Glutaminsäure ist eine optisch aktive Verbindung. Für unsere Betrachtung hätte die Einbeziehung der optischen Aktivität die Sache nur  unnütz verkompliziert.

 

Glutaminsäure

Glutaminsäure-Mikrokristall im polarisierten Licht.

 

Glutaminsäure

Glutaminsäure-Mikrokristall im polarisierten Licht.

 

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Beitrag gibt es eine Vergleich einiger optisch aktiver Kristalle mit optisch inaktiven.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

 

 

 

Zoomen mit der Spiegelreflexkamera an einem trinokularen Mikroskop.

Hallo liebe Freunde der Mikrokristalle.

Im letzten Blogbeitrag haben wir ein monokulares Mikroskop älterer Bauart über ein Balgengerät mit einer Spiegelreflexkamera verbunden um damit zu zoomen.

Heute nehmen wir uns ein trinokulares Mikroskop vor. Es ist ein Instrument im unteren Preissegment. Neben den 2 Tuben für die Okulare verfügt es über einen dritten Tubus für die Kamera-Adaption. Er hat einen genormten Durchmesser von 23,2 mm. An diesem Tubus adaptieren wir unsere Spiegelreflexkamera mit Balgengerät.

 

Trinokulares Mikroskop

Trinokulares Mikroskop

Das Balgengerät wurde detailliert im vorigen Blogbeitrag besprochen. Hier zur Erinnerung: Auf beiden Seiten besitzt es M42-Gewinde. Das Kameragehäuse muß daher über einen T2-Ring mit dem Balgen verbunden werden. Der wesentliche Unterschied zum vorigen Beitrag ist die Adaption des Balgengerätes an das Mikroskop. Hierzu benötigen wir einen Adapter mit Okular. Solche Adapter sind im Handel erhältlich oder können beim Mikroskophersteller gekauft werden. Sie kosten etwa 30 Euro. Das zugehörige Okular liegt preislich in der gleichen Größenordnung. (Natürlich gibt es Adapter und Okulare auch in ganz anderen Preiskategorien).

 

Adapter und Okular

Kameraadapter für Tubus mit 23,2 mm Steckhülse und Okular.

Das Okular wird in den Adapter gesteckt.

Adapter_mit_Okular

Kameraadapter mit eingestecktem Okular.

Dann wird der Adapter mit seinem M42-Gewinde an das Balgengerät geschraubt und in den Tubus des Mikroskops gesteckt. Das Balgengerät ist über einen Kugelkopf mit dem Stativ eines alten Vergrößerungsapparates verbunden. (Auch ein Reprostativ ist geeignet). Über die Zahnstange am Stativ kann der Balgen mit Kameragehäuse hoch und runter gefahren werden, um ihn so zu verkürzen oder zu verlängern.

Detailansicht

Balgengerät über Adapter an einem trinokularen Mikroskop.

Und so sieht es in der Gesamtansicht aus:

Gesamtansicht

Nikon D300s über Balgengerät und Adapter an einem trinokularen Mikroskop.

Durch das Hoch- und Runterfahren des Balgens, zusammen mit dem Kameragehäuse ist Zoomen in gewissen Grenzen möglich. Hier ein Beispiel:

Vitamin C

Vitamin C Mikrokristalle im polarisierten Licht.
Okular 10x Objektiv 10x
Balgen 0% ausgefahren.

 

Vitamin C

Vitamin C Mikrokristalle im polarisierten Licht.
Okular 10x Objektiv 10x
Balgen 50% ausgefahren.

 

Vitamin C

Vitamin C Mikrokristalle im polarisierten Licht.
Okular 10x Objektiv 10x
Balgen 100% ausgefahren.

Bei den Aufnahmen wurde die Kamera am PC über ein Kontrollprogramm gesteuert. Um im polarisierten Licht fotografieren zu können, befindet sich über der Lampe des Mikroskops ein drehbares Polarisationsfilter, ein zweites Polarisationsfilter steckt im Mikroskopaufsatz. Einzelheiten dazu findet man in meinem Blogbeitrag „Ein trinokulares Mikroskop im unteren Preissegment“, Juli 2015.

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Blogbeitrag betrachten wir die Glutaminsäure. Im polarisierten Licht ergeben ihre Mikrokristalle außergewöhnliche Fotos.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

Zoomen mit der Spiegelreflexkamera an einem monokularen Mikroskop.

Hallo liebe Freunde der Mikrokristalle,

wie kann man beim Fotografieren im polarisierten Licht, am Mikroskop mit einer Spiegelreflexkamera zoomen?

Moderne Kameras, egal welchen Typs, verfügen meist über Zoomobjektive, die häufig auch zur Festlegung des Bildausschnitts genutzt werden. Bei einer Spiegelreflexkamera, die über einen Adapter und ohne Kameraobjektiv mit dem Mikroskop verbunden ist, haben wir diese Möglichkeit nicht.

Gelegentlich verwendete man auch heute noch für Nahaufnahmen ein Balgengerät. Es ermöglicht die kontinuierliche Verlängerung der Bildweite und führt so zur Vergrößerung des Abbildungsmaßstabes. Dabei wird der Balgen  zwischen Kameragehäuse und Objektiv geschaltet. Er besitzt einen, wie bei einer Ziehharmonika gefalteten, lichtdichten  Lederbalg, der auf einem Einstellschlitten  laufend, verlängert oder verkürzt werden kann. Der Lederbalg wird eingeschlossen von der Objektiv- und Gehäusestandarte. Das sind Metallringe, bei dem die Gehäusestandarte fest auf dem Einstellschlitten sitzt während die Objektivstandarte auf dem Einstellschlitten vor und zurück bewegt werden kann und so das Ausziehen des Balgs ermöglicht.

Den gleichen Effekt wie bei Nahaufnahmen erzielen wir auch am Mikroskop, wenn der Balgen zwischen Kameragehäuse und Mikroskop-Okular geschaltet wird. Auch hier kann durch kontinuierliches Verlängern oder Verkürzen der Balgenlänge den Abbildungsmaßstab vergrössern oder verkleinern werden.

Wohl dem, der aus alten Zeiten ein solches Schätzchen noch besitzt. Und wenn nicht, bei eBay werden Balgengeräte günstig angeboten, insbesondere mit dem alten M42-Gewinde auf beiden Seiten. Gerade das M42-Gewinde ist für unsere Zwecke ideal. Kameraseitig benötigen wir dann noch einen T2-Ring. Diese Ringe gibt es für praktisch alle Spiegelreflexkameras. Sie besitzen kameraseitig das jeweils passende Kameragewinde und auf der anderen Seite ein M42-Gewinde.  Über den T2-Ring wird die Kamera mit dem Balgengerät an der Kamerastandarte verbunden. Die Verbindung zum Mikroskop ist flexibel! Das Gewicht von Kamera und Balgengerät wird von einem Stativ getragen.

Altes Mikroskop

Das hier gezeigte Instrument ist ein monokulares Mikroskop älterer Bauart mit einem drehbaren Polarisationsfilter unter dem Kondensor. Bei diesem Mikroskoptyp erfolgt das Scharfstellen nicht wie bei modernen Mikroskopen über das Verstellen des Mikroskoptisches. Hier wird der Okulartubus zum Scharfstellen rauf- und runtergefahren. Daher darf das schwere Kameragehäuse einer Spiegelreflexkamera zusammen mit dem Balgengerät keinesfalls fest mit dem Tubus verbunden sein! Das Gewicht von Kamera und Balgen würde den Tubus herunterdrücken und das Scharfstellen unmöglich machen. Um das zu verhindern, kann man folgende Anordnung wählen:

Über den Mikroskoptubus, in dem das Okular eingesteckt ist, einen Plastikschlauch stülpen, der ca. 5 mm über den Okularrand hinausragt. (Solche Schläuche gibt es in jedem Baumarkt).

Zusätzlich benötigen wir ein Polarisationsfilter vor dem Okular,das mit dem Balgen mikroskopseitig verbunden ist. Mit wenig Mühe können wir uns eine Anordnung zusammenbasteln: Auf einen M42-Zwischenring (ebay) klebt man ein lineares oder zirkulares Polarisationsfilter. Verwendet man Zirkular-Polarisationsfilter, muß man unbedingt auf die richtige Seite achten. Man legt das Zirkular-Polarisationsfilter testweise auf das Okular, schaut durch das Mikroskop, ohne Objekt, und verdreht das obere oder untere Filter. Dabei sollte der Lichtdurchgang gesperrt werden. Ist das nicht der Fall, Zirkularpolarisationsfilter umdrehen. Der abgebildete Adapter besitzt noch einen T2-Ring, der hier natürlich überflüssig ist.

Mikroskop-Adapter

Mikroskopadapter bestehend aus T2-Ring, Zwischenring und Polarisationsfilter

Den M42-Zwischenring mit dem aufgeklebten Polfilter mikroskopseitig an das Balgengerät schrauben. Jetzt benötigen wir noch ein Stativ. Ideal ist das Stativ eines alten Vergrößerungsapparates. Auch ein Reprostativ tut seinen Dienst. An beiden Stativtypen kann man eine angeschraubte Kamera durch Drehen des Stativrades rauf- und runterfahren. Wir setzen aber statt einer Kamera das Balgengerät an das Stativ an. Balgengeräte besitzen dafür normalerweise 2 Schraubgewinde. Eins befindet sich an der Montageplatte des Balgens, das andere an der objektivseitigen  Kamerastandarte. Wir verbinden die Montageplatte mit dem Stativ und setzt das Kameragehäuse über den T2-Ring an die Kamerastandarte des Balgen an. Löst man die Arretierschraube am Balgen, ist der Lederschlauch frei auf dem Einstellschlitten verschiebbar. Wir stellen nun das Mikroskop unter die ganze Apparatur und fahren vorsichtig den Balgen mit der aufgesetzten Kamera durch Drehen des Stativrads herunter, bis das Polfilter am unteren Teil des Balgens gerade auf dem Plastikschlauch aufliegt. Der Vorteil dieser Anordnung:

 

  • Beim Auslösen der Kamera werden kaum Schwingungen auf das Mikroskop übertragen.
  • Über das Betätigen des Stativrades kann der Balgen kontinuierlich verlängert oder verkürzt werden. Damit können wir den Abbildungsmaßstab verändern, wir zoomen!
  • Die leichte Verschiebung des Tubus beim Scharfstellen am Mikroskop, wird durch den Balgen ausgeglichen, solange die Arretierschraube am Balgen nicht festgestellt ist.

 

Die Bildbeobachtung kann entweder über LiveView, Kamerasucher oder am besten am Bildschirm mit Hilfe einer geeigneten Software wie Nikon Camera Control oder digiCam Control erfolgen.

Hier 2 Beispiele, die mit dem oben abgebildeten Mikroskop aufgenommen wurden.

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 4x
Balgenauszug 0%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 4x
Balgenauszug 50%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 4x
Balgenauszug 100%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 10x
Balgenauszug 0%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 10x
Balgenauszug 50%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 10x
Balgenauszug 100%

Soviel für heute, liebe Freunde der Mikrokristalle.

Der nächste Blogbeitrag hat die Adaption eines Balgen-Geräts an ein trinokulares Mikroskop am Beispiel des Bresser Researcher Trino zum Thema.
Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

 

Harnstoff: Ein Wegbereiter der Organischen Chemie.

Hallo liebe Freunde der Mikrokristalle,

heute wenden wir uns, im Titel ist es schon angesprochen, einer sehr bedeutenden Substanz der Organischen Chemie zu, dem Harnstoff.

Was macht ihn so bedeutend?  1828 tritt der Harnstoff also Wegbereiter der Organischen Chemie in die Geschichte der Chemie ein. Bis dahin war man der Auffassung, dass chemische Substanzen, die in der belebten Welt, also im Pflanzen- und Tierreich vorkommen, nicht vom Menschen synthetisch hergestellt werden können. Man glaubte, eine besondere „Lebenskraft“ sein dazu erforderlich. Aber 1828 gelang es dem deutschen Chemiker Friedrich Wöhler, aus den rein anorganischen Ausgangsstoffen Kaliumcyanat und Ammoniumsulfat,  Harnstoff zu erzeugen. Damit war es erstmals gelungen, eine Substanz der belebten Natur im Labor aus anorganischen Stoffen herzustellen. Das war eine Sensation, zumindest aus heutiger Sicht, denn damals war sich Wöhler der ganzen Tragweite seiner Arbeit wohl gar nicht voll bewusst. Aber die Organische Chemie trat ihren Siegeszug um die Welt an. Bis heute sind etwa 40 Millionen organische Substanzen bekannt, mehre Millionen davon wurden künstlich in Laboratorien hergestellt.

Und alles begann mit dem Harnstoff. Darum gleich mal ein Foto von dieser tollen Substanz:

Harnstoff

Harnstoff-Kristalle unter dem Mikroskop im polarisierten Licht.

Chemisch betrachtet ist Harnstoff das Diamid der Kohlensäure. Für den Nichtchemiker: Im Mineralwasser kennen wir die sprudelnde Kohlensäure. Wenn diese unter bestimmten Bedingungen mit Ammoniak (Salmiakgeist) chemisch reagiert, (150 Grad Celsius 100 ATM. Druck), erhalten wir Harnstoff.

Im menschlichen und tierischen Körper entsteht Harnstoff als Abbauprodukt von Proteinen (Eiweiss). Wir scheiden täglich etwa 30 Gramm Harnstoff über den Urin aus, daher auch der Name.

Die chemische Formel von Harnstoff:

Harnstoff

Harnstoff

Und wenn die Formel auch sehr unspektakulär ist, Harnstoff bildet sehr schöne Mikrokristalle unter dem Mikroskop im polarisierten Licht:

Harnstoff

Harnstoff-Kristalle unter dem Mikroskop im polarisierten Licht.

Und nun wird es ganz aktuell und etwas heikel.

Wir wenden uns dem Dieselmotor und damit auch dem VW-Skandal zu. Die Verbrennung des Dieseltreibstoffs in Dieselmotoren erfordert sehr viel höhere Temperaturen und Drücke, als die Verbrennung von Benzin in Otto-Motoren. Die Verbrennungsluft enthält bekanntlich neben Sauerstoff auch Stickstoff. Unter den Temperatur- und Druckbedingungen im Dieselmotor, reagiert Luftsauerstoff mit Luftstickstoff zu Stickoxiden, besser bekannt unter der Bezeichnung NOx. Diese Bezeichnung wurde gewählt, weil es verschiedene Stickstoff/Sauerstoff- Verbindungen gibt: So ist N2O  das bekannte Lachgas, das in der Zahnmedizin also Narkosemittel verwendet wird. NO2 ist eine besonders giftige Verbindung, die sich in der Lunge mit Wasser zu Salpetersäure umsetzt. Diese Säure ist extrem giftig. Besonderes tückisch an den Stickoxiden ist, daß sie nicht einmal sehr ätzend riechen. Man hält beim Einatmen nicht sofort die Luft an.

Aus den Abgasen der Dieselautos werden die Stickoxide entfernt, und das mit Hilfe des Harnstoffs. Harnstoff reagiert chemisch mit ihnen und macht sie unschädlich. Dieser Prozess klingt sehr einfach, ist in der Praxis aber kompliziert. So muss die Harnstoffmenge sehr exakt dosiert werden, was einen erheblichen technischen Aufwand erforderlich macht. Einfacher ist es, den ganzen Mechanismus einfach abzuschalten, in der Hoffnung, daß es keiner merkt.

Hier gleich noch ein Foto des vielseitigen Harnstoffs:

Harnstoff

Harnstoff-Kristalle unter dem Mikroskop im polarisierten Licht.

Harnstoff bekommt man normalerweise ohne Probleme in der Apotheke, besonders wenn man dem Apotheker sagt, was man damit vorhat. Die Substanz ist sehr gut in Wasser und Spiritus löslich und kristallisiert aus beiden Lösungsmitteln sehr gut.

Einfach ein paar Kristalle auf einen sauberen Objektträger geben, einen Tropfen dest. Wasser oder Spiritus oder eine Mischung beider Lösungsmittel 1:1 hinzugeben. Die Kristalle lösen sich sofort. An einem staubfreien Ort ohne Deckglas eintrocknen lassen. Man kann die Proben später mit einem Deckglas abdecken und vorsichtig auf einer Herdplatte aufschmelzen. Harnstoff schmilzt bei 133 Grad Celsius unter Zersetzung. Darum schnell wieder von der Herdplatte nehmen, wenn die Kristalle geschmolzen sind. Unter dem Mikroskop, im polarisierten Licht finden wir farbenprächtige Kristalle.Die folgende Aufnahme ist so entstanden:

Harnstoff

Harnstoff, kristallisiert aus einer Schmelze unter dem Mikroskop im polarisierten Licht.

Es ist doch bemerkenswert: Bei Mensch und Tier verlassen die Abbauprodukte der Proteine den Körper in Form von Harnstoff über den Urin. In Dieselmotoren eliminiert  Harnstoff schädliches NOx und sorgt für saubere Abgase. Auch in Kraftwerken hilft Harnstoff die Rauchgase von NOx zu befreien, und nicht zu vergessen, wir können auch wunderschöne Mikrofotos davon machen.

Soviel für heute, liebe Freunde der Mikrokristalle.

Im nächsten Blogbeitag wenden wir uns der Frage zu, ob man am Mikroskop beim fotografieren auch zoomen kann.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

digiCamControl ein Steuerungsprogramm für Digitalcameras.

Hallo liebe Freunde der Mikrokristalle,

im letzten Blogbeitrag wurde eine Alternative zu Nikon Camera Control angekündigt. Hier ist sie: digiCamControl.

Diese Software ist ein Freeware-Programm und kann kostenlos aus dem Internet heruntergeladen werden. Der Download ist kein Testprogramm, es fallen also auch später keine Kosten an.

Hier aber eine Warnung: Ob man einem kostenlosen Programm vertrauen kann, ist kaum abzuschätzen. Es gibt bekanntlich Freeware-Programme, mit denen man sich unbemerkt zusätzlich Schadsoftware mit auf den Rechner lädt. Jeder muss somit selber entscheiden, ob er das Risiko eines kostenlosen Downloads eingehen will. Der Autor übernimmt ausdrücklich keinerlei Haftung für das Herunterladen und die Verwendung von digiCamControl.

digiCamControl lief auf dem Rechner des Autors ursprünglich auf einer 32-bit-Windows 7-Version, die später auf Windows 10 umgestellt wurde. digiCamControl läuft auf beiden Betriebssystemen tadellos. Die Software wurde besonders für Nikon- und Canon-Kameras geschrieben. Eine Liste kompatibler Kameras findet sich auf http://www.digicamcontrol.com

Vielleicht funktionieren aber auch andere Kamera-Modelle, man sollte es einfach ausprobieren. Das Programm macht einen sehr professionellen Eindruck. Über ein USB-Kabel wird die Kamera mit dem Rechner verbunden. Verwendet man eine kompatible Kamera, erkennt das Programm nach dem Start sofort den Kameratyp. Und schon kann es losgehen:

digiCamControl

Nikon D 610 und digiCamControl.

Das Scharfstellen am Mikroskop erfolgt über die Beobachtung des Bildes am Bildschirm. Sobald die Schärfe stimmt, wird durch einen Mausklick der Kameraverschluss ausgelöst. Mit der Kameraeinstellung A wird automatisch belichtet, man kann aber auch M wählen und manuell die Belichtung einstellen. Beide Einstellungen können am Rechner vorgenommen werden.

Belichtungsreihen, z.B. für HDR-Aufnahmen, sind ohne Problem möglich. Auch das Nikon RAW-Format wird akzeptiert. Die Bilder werden direkt auf die Festplatte des Rechners übertragen. Man kann sie sofort z.B. mit Nikon View überprüfen.

digiCamControl ist eine echte Alternative zu Nikon Camera Control Pro 2, unter Berücksichtigung des weiter oben ausgesprochenen Warnhinweises.

Hier einige Fotos, die unter Verwendung der Software aufgenommen wurden:

Hydrochinon

Hydrochinon mit digiCamControl aufgenommen.

 

Acetylsalicylsäure

Acetylsalicylsäure mit digiCamControl aufgenommen.

 

Harnstoff

Harnstoff mit digiCamControl aufgenommen.

Die letzte Aufnahme, liebe Freunde der Mikrokristalle, leitet über zu dem Thema des nächsten Blogbeitrags: Harnstoff.

Dieser interessante Stoff spielt eine wichtige Rolle bei der Entgiftung von Diesel-Abgasen. Ein hochaktuelles und interessantes Thema. Man sollte es nicht versäumen.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

Steuerung einer Nikon-Spiegelreflexkamera mit Nikon Camera Contol Pro 2

Hallo liebe Freunde der Mikrokristalle,

wer schon einmal Mikrokristalle fotografiert hat, kennt die Probleme: Bildbeurteilung, Scharfstellen und verwacklungsfreies Auslösen. Direkt an der Kamera geht das alles nicht so einfach, wenn sie am Mikroskop adaptiert ist.

Eine gute Lösung dieser Probleme liegt in der Steuerung der Kamera über einen PC oder Laptop. Dazu benötigt man ein Steuerungsprogramm und ein USB-Verbindungskabel zwischen Kamera und Rechner. (Es geht auch drahtlos). Nikon Spiegelreflexkameras, lassen sich über Nikon Camera Control Pro 2 steuern. Auch das schon früher erwähnte Helicon Focus enthält als kostenlose Beigabe ein geeignetes Steuerungsprogramm, Helcon Remote, das natürlich auch für andere Kamera-Typen geeignet ist.

Hier wird die Arbeitsweise mit Nikon Camera Control Pro 2 beschrieben. Leider muß hier eine Warnung vorausgeschickt werden: Wer Nikon Camera Control Pro 2 erwerben will, muß vorher prüfen, ob seine Spiegelreflexkamera von der ins Auge gefassten Programmversion unterstützt wird. Keinesfalls ist jede Programmversion von Nikon Camera Control Pro 2 mit allen Nikon-Spiegelreflexkameras kompatibel! Kompatibilität muß man auch bei Helicon Remote überprüfen. Die Webseiten der Hersteller geben darüber Auskunft.

Verfügt man über die zur Kamera passende Programmversion, dann ist alles Weitere sehr einfach. Das Programm wird auf den Rechner geladen, es gibt MAC und Windows-Versionen, und man verbindet die Kamera mit dem Rechner über ein USB-Kabel.

 Nikon Camera Control Pro 2

Das Programm wird gestartet, und sobald die Kamera erkannt ist, erscheint das rechts auf dem Bildschirm dargestellte Menü.

Hier nochmals besser sichtbar:

_DSC6711_k

Ein Klick auf den Button rechts unten lässt das mikroskopische Bild links auf dem Bildschirm erscheinen.

 

Das mikroskopische Bild auf dem Bildschirm.

Völlig stressfrei kann man jetzt am Mikroskop den passenden Ausschnitt wählen und die Wirkung des Bildes überprüfen.

Über eine Lupenfunktion kann das Bild exakt scharf gestellt werden. Man erkennt sehr genau eventuelle Randunschärfen bei einfachen achromatischen Objektiven oder unscharfe Bereichen wegen zu geringer Tiefenschärfe.

Bei der Belichtung kann zwischen Zeitautomatik oder manueller Belichtungssteuerung  gewählt werden. Ist alles korrekt eingestellt, wird mit einem Klick auf den Auslösebutton das Bild aufgenommen. Da keine Kameraberührung stattfindet, geschieht es verwacklungsfrei. Das Bild wird dann am vorbestimmten Ort, z.B. auf der Festplatte, gespeichert.

Viele der wichtigsten Kamerafunktionen sind am Rechner direkt einstellbar.

Das Arbeiten und Fotografieren am Mikroskop macht ohne jeden Zweifel viel mehr Spaß, wenn man die Kamera über den Rechner steuert. Insbesondere die Bildbeurteilung auf dem Bildschirm ist nicht zu vergleichen mit den kleinen Bildern auf den Kameramonitoren. Aber die Sache hat ihren Preis. Nikon Camera Control Pro 2 kostet ca. 140 EURO.

Eine Alternative ist das schon mehrmals erwähnte „Helicon Focus Pro“. Es enthält neben dem Hauptprogramm das Programm Helicon Remote, das über ähnliche Eigenschaften wie Nikon Camera Control Pro verfügt. Es kostet aber leider auch knapp 140 EURO.  Als Hauptfunktion lassen sich mit Helicon Focus Bilder mit großer Tiefenschärfe aus mehreren Einzelaufnahmen erzeugen. Man erhält also einiges mehr für sein Geld.

Aber, liebe Freunde der Mikrokristalle, es gibt Hoffnung:

Ein Open Source Programm, kostenlos und mit ähnliche Funktionen wie Nikon Camera Control Pro 2 wird das Thema des nächsten Blogbeitrags sein. Besonders interessant somit auch für Schüler, die sich teure Software nicht leisten wollen oder können.

Bis dahin liebe Freunde der Mikrokristalle, wünsche ich eine gute Zeit.

H-D-S