Mikrokristalle aus Schmelzen von Stoffmischungen.

Hallo liebe Freunde der Mikrokristalle,

viele chemische Substanzen bilden schöne Kristallformen aus Schmelzen heraus.

Manchmal ergeben sich überraschende Kristallformen, wenn man ein Stoffgemisch aufschmilzt. Auch wenn eine chemische Verbindung nicht thermostabil ist und nur unter Zersetzung schmilzt, kann es sinnvoll sein, sie gemeinsam mit einer anderen aufzuschmelzen um den Schmelzpunkt zu senken.

Fragen wir uns einmal was passiert, wenn man ein Zweistoffgemisch zum Schmelzen bringt und langsam wieder abkühlen läßt. Das folgende Phasendiagramm beschreibt diesen Vorgang. Es gilt für Zweistoffsysteme, bei denen beide Komponenten in der Schmelze vollkommen löslich und im festen Zustand vollkommen unlöslich sind. Letzteres bedeutet, daß sie keine Mischkristalle bilden können.

Phasendiagramm

Phasendiagramm

Stellen wir uns vor, wir haben eine Mischung aus 2 Komponenten, wir nennen sie A und B. Auf der waagerechten Achse des Phasendiagramms sind die prozentualen Anteile der Komponenten aufgetragen. Ganz links beginnt Stoff A mit 100% und endet ganz rechts mit 0%. Umgekehrt beginnt B ganz rechts mit 100% und endet ganz links mit 0%. An jeder Stelle der Achse addieren sich A+B zu 100%. Wir wollen annehmen, in unserer Mischung hat A den prozentualen Anteil A1.  Dann hat B den Anteil 100-A1.  A1 ist rot im Phasendiagramm eingezeichnet.

Auf der linken senkrechten Achse ist die Temperatur aufgetragen. Wir erwärmen unsere Mischung, bis sie vollkommen geschmolzen ist. Im Phasendiagramm befinden wir uns jetzt im oberen Bereich der Schmelze. Nun lassen wir die Schmelze langsam abkühlen. Wenn die Temperatur den Punkt T1 erreicht hat, stoßen wir auf die linke Liquiduslinie. Sobald diese Linie erreicht ist, beginnt die Kristallisation von Stoff A, meist in großen Kristallen. Bei weiterem Abkühlen erreichen wir die Temperatur Te und eine Linie, die Soliduslinie genannt wird. Ab dieser Temperatur kristallisiert der ganze Rest der Schmelze, der aus bis dahin noch nicht kristallisiertem Stoff A und dem gesamten Stoff B besteht. Die Kristalle des Gemenges aus A +B sind meist sehr feinkörnig, da die Kristallisation sehr schnell erfolgt. Auf der linken Liquiduslinie liegen somit die Temperaturen, bei denen, in Abhängigkeit von der Zusammensetzung der Stoffmischung, A aus der Schmelze zu kristallisieren beginnt. Das Gleiche gilt für Stoff B auf der rechten Liquiduslinie.

Wir sehen im Phasendiagramm, daß die zwei Liquiduslinien in einem Punkt (rot eingezeichnet) auf die Soliduslinie treffen. Zu diesem Punkt gehören die Konzentrationen Ae und Be. Dieser Punkt ist der  eutektische Punkt. Wählt man eine Mischung von A und B mit den Konzentrationen Ae und Be, so geht die gesamte Schmelze, wie man an dem Diagramm ablesen kann, bei der Temperatur Te schlagartig in ein feinkristallines Gemenge von A+B (Eutektikum genannt) über. Es kristallisiert vorher also keine der reinen Komponenten aus. Die Temperatur Te ist die niedrigste Erstarrungstemperatur die bei einem Gemisch von A und B möglich ist.

Wählt man in einer Mischung aus A und B die Konzentration von A größer Ae, bewegen wir uns auf der linken Liquiduslinie und es  wird aus der Schmelze immer zuerst A alleine auskristallisieren, und dann erst unterhalb Te der Rest von A mit dem gesamten B als feinkristallines Gemenge.

Wählt man das Mischungsverhältnis von A und B so, daß die Konzentration von A kleiner ist als Ae, bewegen wir uns auf der rechten Liquiduslinie, und es wird beim Abkühlen immer zuerst B auskristallisieren, auch wieder meist in großen Kristallen, bis auch hier die Temperatur  Te erreicht ist, dann kristallisieren A und der Rest von B als Gemenge in kleinen Kristallen.

Wo die linke Liquiduslinie auf die linke Temperaturachse trifft, liegt der Schmelzpunkt von A. Entsprechend liegt der Schmelzpunkt von B an dem Punkt, an dem die  rechte Liqiudusline auf die rechte Temperaturachse trifft.

Soweit die Theorie. Welche praktischen Schlüsse kann man für unsere Mikrokristalle ziehen? In aller Regel haben wir kein Phasendiagramm der Stoffe, die wir mischen wollen zur Hand. Aber wir wissen jetzt, daß bei einer Mischung, egal in welchem Verhältnis wir die Komponenten mischen, der Schmelzpunkt erniedrigt wird. Das kann hilfreich sein, wenn der Stoff von dem wir Kristalle aus der Schmelze erzeugen wollen, nicht thermostabil ist. Ferner sehen wir am Phasendiagramm, daß je nach Mischungsverhältnis, immer einer der Stoffe zuerst und in reiner Form  kristallisiert. Hier muß man mit den Mischungsverhältnissen etwas experimentieren wenn man will, daß ein bestimmter Stoff zuerst kristallisiert. Wichtig ist, daß man langsam abkühlt, weil sonst die Phasen zu schnell durchlaufen werden. Es wird meist auch besser sein, ein Mischungsverhältnis zu wählen, bei dem eine Komponente stark überwiegt.

Auf einem Objektträger wird man, langsames Abkühlen vorausgesetzt, bei Schmelzen aus 2 Komponenten neben meist schönen großen Kristallen feines Grieselzeug (Eutektikum) finden. Hier gleich ein Beispiel: Eine Mischung aus 20% Asparagin und 80% Harnstoff wurde auf einem Objektträger mit Deckglas aufgeschmolzen und langsam auf einer Herdplatte abgekühlt.

Schmelze aus 20% L-Asparagin und 80% Harnstoff

Schmelze aus 20% L-Asparagin und 80% Harnstoff

Ich möchte zwar nicht garantieren, daß die links sichtbaren feinkristallinen Anteile wirklich die Kristalle sind, die unterhalb der eutektischen Temperatur Te schlagartig kristallisiert sind, aber einiges spricht durchaus dafür.

Einen Nachteil hat das Arbeiten mit Mischungen. Reine Stoffe kristallisieren immer besser als verunreinigte. Der Kristallisationsvorgang wird durch Verunreinigungen immer gestört und das Mischen ist in diesem Sinne ja ein gezieltes „Verunreinigen“. Dennoch Experimentieren lohnt sich.

Hier zur Entspannung einige Aufnahmen, die alle aus einer Mischung von 20% L-Asparagin mit 80% Harnstoff entstanden sind. (Harnstoff ist nicht thermostabil und zersetzt sich beim Schmelzen).

 

20% L-Asparagin 80% Harnstaff

20% L-Asparagin 80% Harnstoff

 

20% L-Asparagin 80% Harnstoff

20% L-Asparagin 80% Harnstoff

 

20% L-Asparagin 80% Harnstoff

20% L-Asparagin 80% Harnstoff

 

20% L-Asparagin 80% Harnstoff

20% L-Asparagin 80% Harnstoff

Wer Freude an schönen Bildern von Mikrokristallen hat, sie aber selber nicht fotografieren will, dem empfehle ich meinen neuen Kalender für 2017, der seit dem ersten Juni im Handel ist.

catalog_577467

Titel: Surreale Farbwelten-Mikrokristalle

Autor: Dieter Schenckenberg

Hier die ISBN-Nummern:
Wandkalender 2017 DIN A4 quer ISBN 978-3-664-84126-4

Wandkalender 2017 DIN A3 quer ISBN 978-3-664-84127-1

Wandkalender 2017 DIN A2 quer ISBN 978-3-664-84128-8

Den Kalender gibt es bei

http://www.amazon.de

http://www.amazon.co.uk

http://www.amazon.fr

http://www.thalia.de

http://www.buchhandel.de

http://www.weltbild.de

http://www.buecher.de

http://www.ebook.de

http://www.calvendo.de

Soviel für heute, liebe Freunde der Mikrokristalle.

Manchmal wirken Mikrokristalle auch im polarisierten Licht farblich nicht sehr beeindruckend. Da kann eine Verzögerungsfolie wahre Wunder wirken. Das wird das Thema meines nächsten Blogbeitrags sein.

Bis dahin wünsche ich eine gute Zeit und erfolgreiche Experimente mit Stoffmischungen.

 

H-D-S

 

 

 

 

 

 

L-Asparagin und L-Asparaginsäure: Spargelinhaltsstoffe für tolle Mikrokristalle

Hallo liebe Freunde der Mikrokristalle,

es ist Spargelzeit, eine gute Gelegenheit, sich dem L-Asparagin und der L-Asparaginsäure zu widmen. Beide Aminosäuren kommen, wie schon der Name sagt, im Spargel vor. Das L-Asparagin war die erste Aminosäure die entdeckt wurde. Es war, wie so oft, der Zufall im Spiel. Der französische Professor Louis-Nicolas Vauquelin fand zusammen mit seinem Studenten Pierre -Jean Robquet 1805 in einer eingedickten Lösung von Spargelsaft Kristalle, die sie Asparagin nannten. Hier die chemische Formel:

L-Asparagin

L-Asparagin

Das mit dem roten Stern gekennzeichnete Kohlenstoffatom ist, wie man sieht, asymmetrisch. Es gibt also zwei im räumlichen Aufbau unterschiedliche Formen des Asparagins, (Stereoisomere oder Enantiomere) die daher auch optisch aktiv sind. (Informationen zur optischen Aktivität und zu asymmetrischen Kohlenstoffatomen findet man in meinem Blogbeitrag zur Weinsäure. Hier gibt es auch Hinweise, wofür das „L“ steht). Ersetzt man beim Asparagin die Amidgruppe (-CONH2) durch eine Carboxylgruppe (-COOH), so erhält man die Asparaginsäure.

L-Asparaginsäure

L-Asparaginsäure

Auch sie besitzt ein asymmetrisches Kohlenstoffatom und ist somit auch optisch aktiv. Beide Aminosäuren wird uns ein freundlicher Apotheker verkaufen oder beschaffen können. Für die Mikrofotos habe ich jeweils die L-Aminosäuren verwendet. Dieses sind auch die in der Natur vorkommenden Formen. Alle Proteine (Eiweißstoffe) des Menschen sind aus nur 20 Aminosäuren aufgebaut, eine davon ist die L-Asparaginsäure.

Sowohl das L-Asparagin, als auch die L-Asparaginsäure  lösen sich gut in heißem Wasser. In Spiritus sind sie nur sehr wenig löslich. Aus Schmelzen kann man keine Kristalle auf dem Objektträger gewinnen, da beide Verbindungen erst bei sehr hoher Temperatur schmelzen und sich dabei zersetzen. Woran liegt das? Beide Stoffe sind Zwitter. Schaut man sich die Moleküle an, so sieht man, daß sie sowohl eine bzw. bei der L-Asparaginsäure 2 Carboxylgruppen und jeweils eine Aminogruppe besitzen. Sie sind also zugleich Säuren und Basen. Bringt man Säuren und Basen zusammen, so bilden sie Salze. Wenn ein Molekül sowohl  saure als auch basische Eigenschaften besitzt, kann es ein inneres Salz bilden. Das ist bei der L-Asparaginsäure und dem L-Asparagin der Fall. Das erklärt auch die schlechte Löslichkeit in Spiritus und anderen organischen Lösungsmitteln. Und als Salze besitzen beide Verbindungen auch einen hohen Schmelzpunkt.

Wir müssen uns also auf das Kristallisieren aus wässriger Lösung beschränken. Beide Verbindungen bilden aber sehr schöne farbige Kristalle. Bringt man in einem Becherglas 250 mg L-Asparagin oder L-Asparaginsäure in 15 ml dest. Wasser zum Sieden, erhält man eine klare Lösung, von der man sofort einen Tropfen auf einen Objektträger gibt und an einem staubfreien Ort ohne Deckglas eintrocknen läßt. Beide Säure beginnen schon nach einigen Minuten zu kristallisieren.

Wer kein hitzebeständiges Becherglas besitzt kann auch Wasser in einem Wassererhitzer zum Sieden bringen und eine gute Teelöffelspitze L-Asparagin oder L-Asparaginsäure in einer kleinen Tasse oder einem kleinen Plastikgefäß mit ca. 15 ml Wasser (1/2 Schnapsglas) übergießen und mit dem Stiel eines Teelöffels gut umrühren. Davon je einen Tropfen auf einen Objektträger geben. Erfolgt die Kristallisation zu schnell, muß man etwas mehr Wasser nehmen, oder auch den Objektträger vorher vorsichtig auf einer Herdplatte erwärmen. (Nicht mit der Hand anfassen sondern mit dem Teelöffel von der Herdplatte schieben!). Sehr schöne Resultate erhält man, wenn man mit 1/3 Spiritus und 2/3 dest. Wasser als Lösungsmittel arbeitet. Die Lösung verteilt sich besser auf dem Objektträger. (Achtung! Spiritus ist sehr feuergefährlich. Niemals mit offener Flamme arbeiten!). Beim Erhitzen von Wasser im Becherglas beständig umrühren und Schutzbrille tragen. Rührt man beim Erhitzen nicht beständig, kann es zu einem Siedeverzug kommen, und das Wasser spritzt explosionsartig aus dem Becherglas. Also, immer eine Schutzbrille tragen.

Jetzt ein paar Fotos, die wie beschrieben, bei 100x Vergrößerung entstanden sind:

 

Asparaginsäure_blog_01

L-Asparaginsäure fotografiert unter dem Mikroskop im polarisierten Licht. Vergrößerung 100x

 

Asparaginsäure_02

L-Asparaginsäure fotografiert unter dem Mikroskop im polarisierten Licht. Vergrößerung 100x

 

Asparagin_01

L-Asparagin fotografiert unter dem Mikroskop im polarisierten Licht. Vergrößerung 100x

 

Asparagin_02

L-Asparagin fotografiert unter dem Mikroskop im polarisierten Licht. Vergrößerung 100x

 

Asparagin_03

L-Asparagin fotografiert unter dem Mikroskop im polarisierten Licht. Vergrößerung 100x

Versucht man die Säuren auf dem Objektträger aufzuschmelzen, zersetzen sie sich, wie schon ausgeführt. Dabei entstehen Blasen von Kohlendioxid. Das kann auch interessante Fotos geben, wie das folgende Beispiel zeigt:

 

Asparaginsäure_zersetzt

CO2-Blasen von zersetzter L-Asparaginsäure.

Soviel für heute, liebe Freunde der Mikrokristalle.

In meinem nächsten Blogbeitrag werde ich der Frage nachgehen, ob man die Schmelzpunkte des L-Asparagins und der L-Asparaginsäure durch bestimmte Maßnahmen herabsetzen kann, um die Zersetzung beim Aufschmelzen zu verhindern.

Bis dahin wünsche ich eine gute Zeit und viel Spaß beim Experimentieren mit dem L-Asparagin und der L-Asparaginsäure.

H-D-S

 

 

Den Wirkstoff Naproxen aus einem Schmerzmittel isolieren.

Hallo liebe Freunde der Mikrokristalle,

wir alle kennen das Problem: Wie beschaffen wir uns chemische Stoffe, die zur Züchtung vom Mikrokristallen geeignet sind. Das zu Recht sehr strenge Chemikaliengesetz, schränkt den freien Verkauf von Chemikalien für chemische Laien erheblich ein. Für unsere Zwecke benötigen wir zwar nur sehr geringe Mengen, sie liegen im Milligramm-Bereich, aber seriöse Händler verkaufen Chemikalien grundsätzlich nur unter ganz bestimmten Voraussetzungen. Was können wir tun? Es gibt eine Reihe rezeptfreier Medikamente, die Wirkstoffe enthalten, die für unsere Zwecke besonders gut geeignet sind, und die sich ohne großen Aufwand isolieren lassen.

Ein solches Medikament ist das „Dolormin für Frauen“, das den Wirkstoff  Naproxen enthält. Dieses pharmazeutische Produkt wird wohl den meisten von uns unbekannt sein, aber fast jeder kennt das Schmerzmittel Ibuprofen. Ibuprofen zählt zur Gruppe der optisch aktiven chemischen Verbindungen. In meinem Blogbeitrag „Optische Aktivität am Beispiel der Weinsäure“ , April 2015, habe ich das Phänomen der optischen Aktivität ausführlich beschrieben. Hier eine ganz kurze Zusammenfassung: Befinden sich in einer chemischen Verbindung an einem Kohlenstoffatom 4 verschiedene Liganden, so nennt man dieses Kohlenstoffatom asymmetrisch. Sind ein oder mehrere asymmetrische Kohlenstoffatome vorhanden, so ist die Verbindung optisch aktiv. Optisch aktive chemische Verbindungen drehen die Ebene des polarisierten Lichts. Je nach  Anordnung der Liganden sind sie links- oder rechtsdrehend. Es gibt bei optisch aktiven Verbindungen mit einem asymmetrischen Kohlenstoffatom also immer 2 Formen, eine linksdrehende und eine rechtsdrehende. In ihrem chemischen Verhalten unterscheiden sich beide Formen nicht. Daher entstehen bei der Synthese einer chemischen Verbindung mit einem asymmetrischen Kohlenstoffatom auch immer beide Formen genau zu gleichen Teilen, da es statistisch betrachtet, keine Bevorzugung der einen oder anderen Form gibt. Das ist auch der Fall beim Ibuprofen. Ibuprofen besitzt ein asymmetrisches Kohlenstoffatom. Auch hier entstehen bei der chemischen Synthese zu genau  gleichen Teilen die linksdrehende und die rechtsdrehende Form. Eine solche Mischung nennt man Racemat.

Obgleich die beiden Komponenten, man nennt sie optische Antipoden, sich in ihrem chemischen Verhalten nicht unterscheiden, wirkt nur eine von ihnen gegen Schmerzen. Diese Komponente ist das Naproxen. (Warum das so ist, wird in einer kleinen Exkursion in meinem nächsten Blogbeitrag betrachtet). Das Schmerzmittel Ibuprofen ist ein Racemat, es enthält also sowohl die linksdrehende als auch  die rechtsdrehende Form. Der wirksame Anteil, das Naproxen ist darin zu 50% enthalten. Die Trennung optischer Antipoden ist ein aufwendiger Prozess, vermutlich verzichtet man daher auf die Trennung beim Ibuprofen.

Für chemisch interessierten, hier die Formel des Naproxens:

Naproxen

Naproxen

Das Sternchen kennzeichnet das asymmetrische Kohlenstoffatom. In der räumlichen Darstellung erkennt man die 4 Liganden an diesem Atom besser, es ist durch den kleinen blauen Punkt markiert:

Naproxen

Naproxen

 

Wer den Wirkstoff aus einer Tablette isolieren möchte, sollte beachten, daß sich keine weiteren Wirkstoffe in dem Medikament befinden. Ein Medikament, das reines Naproxen enthält, ist das „Dolormin für Frauen“.

Dolormin

Dolormin

Bitte aufpassen, es gibt auch noch andere Zubereitungen die auch unter der Bezeichnung Dolormin verkauft werden, sie enthalten aber nicht das reine Naproxen!

Es ist einfach, Naproxen aus einer Tablette zu isolieren. Man benötigt 2 kleine 50 ml Bechergläser, Schnapsgläser tun es zur Not auch, einen kleinen Filtertrichter, einen Glasstab, der Stil eines Teelöffels geht auch, und ein Papierfilter. Als Filter kann man das Papier eines Kaffeefilters verwenden. Als Lösungsmittel verwenden wir Spiritus.
Aus dem Kaffeefilter schneidet man ein rundes Filter aus, Durchmesser ca. 8-10 cm.

Eine Tablette Dolormin wird zu einem Pulver fein zerkleinert. Wer hat, verwendet einen Mörser. Man kann die Tablette aber auch zwischen 2 Blatt Papier legen und mit einem Hammer vorsichtig zerkleinert. Das Pulver gibt man in ein 50 ml Becherglas. Wer kein Becherglas besitzt, kann auch ein anderes Glas, wie z.B. ein Schnapsglas verwenden. Man fügt ca. 10 ml Spiritus zu und rührt mit einem Glasstab ein paar Minuten. Das Naproxen ist löslich in Spiritus und trennt sich auf diese Weise von den in Spiritus unlöslichen übrigen Tabletten-Bestandteilen. Am Besten läßt man das Ganze eine Stunde stehen. Nun nimmt man das runde Filter, faltet es 2 mal, so daß eine kleine Filtertüte entsteht. Diese setzt man in den Trichter ein und befeuchtet das Filter mit etwas Spiritus. Dadurch liegt es glatt an der Wand des Trichters an. Nun filtriert man vorsichtig in das zweite Becherglas. Die Flüssigkeit an dem Glasstab entlang laufen lassen. Es entsteht ein leicht trübes, gelbliches Filtrat. Man läßt es ca. eine Stunde stehen und filtriert dann nochmals. Man erhält so ein fast klares Filtrat.

Von dem Filtrat kann man schon einmal einen Tropfen auf einen Objektträger geben. Das Naproxen kristallisiert sehr schnell. Meist sind die Kristalle nicht sonderlich schön, manchmal gelingen sie aber gut, hier 2 Beispiele, die so wie hier beschrieben entstanden sind:

Naproxen, kristallisiert aus einer Spiritus-Lösung.

Naproxen, kristallisiert aus einer Spiritus-Lösung.

 

Naproxen, kristallisiert aus einer Spiritus-Lösung.

Naproxen, kristallisiert aus einer Spiritus-Lösung.

 

Das Becherglas lässt man offen an einem staubfreien Ort stehen, damit der Spiritus verdampfen kann. Keinesfalls darf in der Nähe eine offene Flamme sein! Wir müssen ein paar Tage Geduld haben, bis der Spiritus verdampft ist.

In der Zwischenzeit kann man aber den Objektträger mit dem fein kristallisierten Naproxen auf einer Herdplatte erwärmen. Naproxen schmilzt bei 152 Grad Celsius. Man sollte auf der kleinsten Stufe der Herdplatte arbeiten und langsam aufschmelzen. Nach dem Schmelzen kristallisiert das Produkt in wenigen Minuten. Die Kristalle, fotografiert im polarisierten Licht sahen dann so aus:

 

Naproxen, kristallisiert aus der Schmelze.

Naproxen, kristallisiert aus der Schmelze.

 

Wenn ein Teil des Spiritus in dem Becherglas verdampft ist, beginnt das Naproxen auskristallisieren. Sobald fast kein Spiritus mehr vorhanden ist, werden die Kristalle auf ein Filterpapier aufgebracht. Saugfähiges Papier, wie Zeitungspapier darunterlegen, um den restlichen Spiritus aufzusaugen. Nach dem Trocknen der Kristalle, sie sind sehr weich, fast wie Watte, diese in einem kleinen Fläschchen aufbewahren. Gibt man einige dieser Kristalle auf einen Objektträger mit Deckglas und schmilzt sie vorsichtig auf, so erhält man atemberaubend schöne Bilder unter dem Mikroskop im polarisierten Licht. Hier einige Proben:

Naproxen, isoliert aus einer Tablette. Kristallisation aus der Schmelze.

Naproxen, isoliert aus einer Tablette.
Kristallisation aus der Schmelze.

 

Naproxen

Naproxen, isoliert aus einer Tablette.
Kristallisation aus der Schmelze.

 

Naproxen

Naproxen, isoliert aus einer Tablette.
Kristallisation aus der Schmelze.

 

Wer statt Naproxen Ibuprofen aus einer Tablette isolieren möchte, kann genau wie oben beschrieben vorgehen. Auch mit Ibuprofen erhält man großartige Mikrofotos. Ein kleiner Hinweis noch für chemische Laien: Spiritus ist chemisch gesprochen Äthylalkohol. Auf reinem Äthylalkohol liegt eine hohe Steuer, er ist daher sehr teuer. Um den preiswerten Spiritus untrinkbar zu machen, wird er mit einem Stoff vergällt, der extrem bitter schmeckt. Darum sollte man in der Küche mit Spiritus vorsichtig zu Werke gehen, und Spiritus nicht mit Lebensmitteln in Verbindung zu bringen. Glasgefäße die Naproxen enthalten kann man nicht mit Wasser reinigen, da Naproxen in Wasser praktisch unlöslich ist. Man muß dafür Spiritus verwenden.

Soviel für heute, liebe Freunde der Mikrokristalle. In meinem nächsten Blogbeitrag geht es um die Frage fotografieren im RAW oder JPG-Format. Ein spannendes Thema.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

 

 

 

 

Cumarin ein Duft- und Geschmacksstoff für Mikrokristalle der Extraklasse.

Hallo liebe Freunde der Mikrokristalle,
vor etwa zehn Jahren und auch immer mal wieder danach, geriet das Cumarin in den Focus der Presse. Was war der Grund?
Weihnachtsgebäck, und hier besonders Zimtsterne wiesen teilweise einen unzulässig hohen Gehalt an Cumarin auf. Woher kam dieser Stoff? Cumarin ist Bestandteil vieler Naturprodukte. Auch in der Rinde des Zimtbaums ist es enthalten. Im Handel werden 2 Sorten von Zimt angeboten, der Ceylon-Zimt und der viel preiswerteren Cassia-Zimt der u.a. aus China und Indonesien kommt. Letzterer besitzt einen sehr viel höheren Cumarin-Gehalt als Ceylon-Zimt. Die Sorten kann man als Stangen, wenn man sie im Querschnitt betrachtet, voneinander unterscheiden. Beim Ceylon-Zimt sieht man mehrere Röhrchen, die ineinander geschoben sind, wogegen der Cassia-Zimt aus einem einzigen dickeren Röhrchen besteht.

Cumarin kann in höheren Konzentrationen zu Lebererkrankungen führen. Manche Menschen besitzen dafür eine besondere Disposition. Es ist daher verboten, Cumarin als Reinsubstanz in Nahrungsmitteln einzusetzen. Über das Gewürz Zimt zugeführt, hat der Gesetzgeber verschiedene Grenzwerte, abhängig vom Nahrungsmittel festgelegt. (Man darf sich allerdings fragen, wie ein Bäckermeister den Cumarin-Gehalt in seinen Zimtsternen ermitteln will). In der kosmetischen Industrie ist Cumarin als Duftstoff ohne Begrenzung zugelassen, es gibt lediglich ab einer bestimmten Konzentration eine Deklarationspflicht.

Der typische Geruch des Zimts rührt nicht primär vom Cumarin, sondern vom Zimtaldehyd her. Auch im Waldmeister-Aroma spielt das Cumarin eine Rolle. Den ganz typischen Geruch vom Cumarin findet man im frischen Heu.

Hier die chemische Formel:

Cumarin

Cumarin

Mikrokristalle von Cumarin zeichnen sich durch eine sehr vielfältige Farbenpracht unter dem Mikroskop im polarisierten Licht aus. Das gilt besonders, wenn man die Kristalle aus der Schmelze gewinnt. Dabei sollte man aber etwas beachten: Kühlt die Schmelze zu schnell ab, werden die Kristalle sehr fein und sind ziemlich unansehnlich. Man kann zur Gewinnung schöner Kristalle folgendermaßen vorgehen:

Auf einen Objektträger wenige Kristalle geben und mit einem Deckgläschen abdecken. Auf z.B. einer Herdplatte bis zum Schmelzen erwärmen. Cumarin schmilzt schon bei ca. 69 Grad Celsius. Nach dem Abkühlen findet man unter dem Mikroskop meist einen wenig farbigen Kristallbrei. Jetzt mit einem Föhn den Objektträger von unten vorsichtig erwärmen, bis die Kristalle wieder weitgehend, aber keinesfalls vollständig geschmolzen sind. Es kristallisieren meist wunderschöne Kristalle, die von der Form her wie Eisblumen am Fenster aussehen, und die unter dem Mikroskop im polarisierten Licht sehr prächtige Farben zeigen. Man kann diesen Vorgang mehrmals wiederholen und erhält immer wieder andere Farben und Formen.

Und hier ein paar Bilder, die auf diese Weise entstanden sind:

 

Cumarin_01

Cumarin_01

 

Cumarin_02

Cumarin_02

 

Cumarin_03

Cumarin_03

 

Cumarin_05

Cumarin_05

Im Chemikalienhandel kann man Cumarin nur kaufen, wenn man selbständig ist und über einen Sachkundenachweis verfügt. Vielleicht hilft bei Kleinstmengen ein Apotheker, wenn man ihm sagt, was man damit vorhat. Aus Zimtpulver läßt sich Cumarin nur mit relativ großem Aufwand isolieren.

Soviel für heute, liebe Freunde der Mikrokristalle. In meinem nächsten Blogbeitrag geht es um die Köhlersche Beleuchtung.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

 

 

 

 

 

 

HDRI-Technik angewandt auf Fotos von Mikrokristallen III.

Hallo liebe Freunde der Mikrokristalle,

das Thema HDR (High Dynamic Range) möchte ich abschließen mit einer Simulation des Tone Mapping-Verfahrens. Wir erinnern uns: Beim Tone Mapping wird der Kontrastumfang eines Hochkontrastbildes (Farbtiefe 16-32 Bit) soweit verringert, daß es auf herkömmlichen Ausgabegeräten (Bildschirmen oder Druckern) dargestellt werden kann (Farbtiefe 8 Bit). Was bedeutet eigentlich Farbtiefe von 8 oder 16 Bit?

Um das zu verstehen, machen wir einen kleinen Ausflug in die Arbeitsweise der Computerspeicher. Stellen wir uns einen Computerspeicher vor, wie ein kariertes Blatt Papier. Jedes Karo ist ein Bit, das kleinste ansprechbare Speicherelement. Bits kennen keine Farben. Sie kennen nur zwei Zustände, ausgedrückt in den Zahlen „0“ und „1“. Wir können in ein Karo also entweder eine „0“ schreiben, oder eine „1“. Mehr geht nicht. Farben müssen also irgendwie in Kombinationen dieser 2 Ziffern dargestellt werden.

Digitale Bilder sind aus drei Grundfarben aufgebaut: Rot, Grün und Blau. Für jede dieser drei Grundfarben reservieren wir auf unserem karierten Blatt separate Speicherplätze, die wir Farbkanäle nennen. Es gibt also einen roten (R), einen grünen (G), und einen blauen (B) Farbkanal. Nehmen wir einmal an, wir reservieren für jeden Farbkanal genau je einen Speicherplatz, den wir mit einer „0“ oder einer „1“ belegen können. Schreiben wir z.B. in den roten Farbkanal eine „0“ so bedeutet das, er enthält keine Farbe. Schreiben wir eine „1“ hinein, enthält er die Farbe Rot. Analog können wir mit den beiden anderen Farbkanälen verfahren. Es ergeben sich dann daraus, mathematisch ausgedrückt,  ( 2 ^ 1 )^ 3 = 8 mögliche Farbkombinationen, wie im folgenden Bild dargestellt:

Darstellbare Farben bei 1 Bit Farbtiefe.

Darstellbare Farben bei 1 Bit Farbtiefe.

Stellen wir pro Farbkanal nur einen Speicherplatz zur Verfügung, so sprechen wir von einer Farbtiefe von einem Bit.

Erhöhen wir gedanklich die Farbtiefe auf 2 Bit. Dann stehen jedem Farbkanal 2 Speicherplätze zur Verfügung, die mit „0“ oder „1“ belegt werden können. Das bedeutet, daß wir jetzt die Farben in (2^2) = 4 unterschiedlichen Intensitäten darstellen könnten.

R                                          B

0 0                 0 0                    0 0

0 1                  0 1                    0 1

1 0                  1 0                    1 0

1 1                   1 1                    1 1

Kombiniert man die Farbabstufungen der Einzelfarben miteinander, ergeben sich (2^2)^3 = 64 verschiedene Farbkombinationen.

Der sRGB-Farbraum arbeitet mit einer Farbtiefe von 8 Bit pro Farbkanal. Somit ergeben sich pro Farbkanal 2^8 = 256 Farbabstufungen. Die 3 Kanäle wiederum miteinander kombiniert ergeben (2^8)^3 = 16.777.216 also rund 17 Millionen Farben. Und für einen 16-Bit-Farbraum kommen wir auf (2^16)^3 = 281.474.976.710.656, also rund 281 Billionen mögliche Farben. Gute Bildschirme im Amateurbereich können den sRGB-Farbraum zu 100% abdecken. Nur für den professionellen Gebrauch decken Bildschirme den vollen RGB-Farbraum ab.

Kehren wir von unserem kleinen Ausflug zurück zu unserem Ziel, das Tone Mapping zu simulieren. Wer Photoshop Elements besitzt, im vorliegenden Beispiel wurde Photoshop Elements 14 benutzt, kann diese Simulation durchführen. Es wird hierbei der Kontrastumfang des Bildes kontrolliert reduziert.

Photoshop Elements besitzt ein Camera-RAW-Plugin, mit dem man auch Bilder im JPG-Format öffnen kann. Durch Verschieben der Schwarz-, Weiss-, Tiefen-, Lichter- und Klarheit- Regler kann man ein Tone Mapping simulieren und erreicht durchaus beachtliche Ergebnisse.

Ich möchte mich nicht mit fremden Federn schmücken, diese Technik habe ich dem sehr lesenswerten Buch „Photoshop Elements 14“ von Jürgen Wolf entnommen. Legen wir also los:

Als Ausgangsbild habe ich wieder das gleiche Mikrofoto von Cumarin verwendet wie in den beiden vorausgegangenen Blog-Beiträgen. Die dunklen Bereiche sind hier viel dunkel.

02_Cumarin

Mikroaufnahme von Cumarin im polarisierten Licht.

In Camera-Raw das Bild öffnen:

 

JPG in Camera RAW

Öffnen einer JPG-Aufnahme in Camera RAW

 

Cumarin in Camera RAW

Mikroaufnahme von Cumarin in Camera RAW.

 

bild_02.1

Originalstellung der Regler.

Jetzt die Regler rechts im Bild folgendermaßen verstellen:

Schwarz ganz nach rechts auf +100

Weiß ganz nach links auf -100

Tiefen ganz nach rechts auf +100

Lichter ganz nach links auf -100

Klarheit ganz nach rechts auf +100

 

bils_03.1

 

Simuliertes Tone Mapping.

Simuliertes Tone Mapping.

Und hier die durch simuliertes Tone Mapping generierte Aufnahme:

Simuliertes Tone Mapping

Durch simuliertes ToneMapping (Dynamikkompression) verbesserte Mikroaufnahme von Cumarin.

Die Aufnahme hat doch gewaltig gewonnen.

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Blogbeitag zeige ich Euch, wie man schöne Mikrokristalle von Cumarin, einem Stoff, der u.a. im Zimt enthalten ist, erzeugen kann.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

Zoomen mit der Spiegelreflexkamera an einem monokularen Mikroskop.

Hallo liebe Freunde der Mikrokristalle,

wie kann man beim Fotografieren im polarisierten Licht, am Mikroskop mit einer Spiegelreflexkamera zoomen?

Moderne Kameras, egal welchen Typs, verfügen meist über Zoomobjektive, die häufig auch zur Festlegung des Bildausschnitts genutzt werden. Bei einer Spiegelreflexkamera, die über einen Adapter und ohne Kameraobjektiv mit dem Mikroskop verbunden ist, haben wir diese Möglichkeit nicht.

Gelegentlich verwendete man auch heute noch für Nahaufnahmen ein Balgengerät. Es ermöglicht die kontinuierliche Verlängerung der Bildweite und führt so zur Vergrößerung des Abbildungsmaßstabes. Dabei wird der Balgen  zwischen Kameragehäuse und Objektiv geschaltet. Er besitzt einen, wie bei einer Ziehharmonika gefalteten, lichtdichten  Lederbalg, der auf einem Einstellschlitten  laufend, verlängert oder verkürzt werden kann. Der Lederbalg wird eingeschlossen von der Objektiv- und Gehäusestandarte. Das sind Metallringe, bei dem die Gehäusestandarte fest auf dem Einstellschlitten sitzt während die Objektivstandarte auf dem Einstellschlitten vor und zurück bewegt werden kann und so das Ausziehen des Balgs ermöglicht.

Den gleichen Effekt wie bei Nahaufnahmen erzielen wir auch am Mikroskop, wenn der Balgen zwischen Kameragehäuse und Mikroskop-Okular geschaltet wird. Auch hier kann durch kontinuierliches Verlängern oder Verkürzen der Balgenlänge den Abbildungsmaßstab vergrössern oder verkleinern werden.

Wohl dem, der aus alten Zeiten ein solches Schätzchen noch besitzt. Und wenn nicht, bei eBay werden Balgengeräte günstig angeboten, insbesondere mit dem alten M42-Gewinde auf beiden Seiten. Gerade das M42-Gewinde ist für unsere Zwecke ideal. Kameraseitig benötigen wir dann noch einen T2-Ring. Diese Ringe gibt es für praktisch alle Spiegelreflexkameras. Sie besitzen kameraseitig das jeweils passende Kameragewinde und auf der anderen Seite ein M42-Gewinde.  Über den T2-Ring wird die Kamera mit dem Balgengerät an der Kamerastandarte verbunden. Die Verbindung zum Mikroskop ist flexibel! Das Gewicht von Kamera und Balgengerät wird von einem Stativ getragen.

Altes Mikroskop

Das hier gezeigte Instrument ist ein monokulares Mikroskop älterer Bauart mit einem drehbaren Polarisationsfilter unter dem Kondensor. Bei diesem Mikroskoptyp erfolgt das Scharfstellen nicht wie bei modernen Mikroskopen über das Verstellen des Mikroskoptisches. Hier wird der Okulartubus zum Scharfstellen rauf- und runtergefahren. Daher darf das schwere Kameragehäuse einer Spiegelreflexkamera zusammen mit dem Balgengerät keinesfalls fest mit dem Tubus verbunden sein! Das Gewicht von Kamera und Balgen würde den Tubus herunterdrücken und das Scharfstellen unmöglich machen. Um das zu verhindern, kann man folgende Anordnung wählen:

Über den Mikroskoptubus, in dem das Okular eingesteckt ist, einen Plastikschlauch stülpen, der ca. 5 mm über den Okularrand hinausragt. (Solche Schläuche gibt es in jedem Baumarkt).

Zusätzlich benötigen wir ein Polarisationsfilter vor dem Okular,das mit dem Balgen mikroskopseitig verbunden ist. Mit wenig Mühe können wir uns eine Anordnung zusammenbasteln: Auf einen M42-Zwischenring (ebay) klebt man ein lineares oder zirkulares Polarisationsfilter. Verwendet man Zirkular-Polarisationsfilter, muß man unbedingt auf die richtige Seite achten. Man legt das Zirkular-Polarisationsfilter testweise auf das Okular, schaut durch das Mikroskop, ohne Objekt, und verdreht das obere oder untere Filter. Dabei sollte der Lichtdurchgang gesperrt werden. Ist das nicht der Fall, Zirkularpolarisationsfilter umdrehen. Der abgebildete Adapter besitzt noch einen T2-Ring, der hier natürlich überflüssig ist.

Mikroskop-Adapter

Mikroskopadapter bestehend aus T2-Ring, Zwischenring und Polarisationsfilter

Den M42-Zwischenring mit dem aufgeklebten Polfilter mikroskopseitig an das Balgengerät schrauben. Jetzt benötigen wir noch ein Stativ. Ideal ist das Stativ eines alten Vergrößerungsapparates. Auch ein Reprostativ tut seinen Dienst. An beiden Stativtypen kann man eine angeschraubte Kamera durch Drehen des Stativrades rauf- und runterfahren. Wir setzen aber statt einer Kamera das Balgengerät an das Stativ an. Balgengeräte besitzen dafür normalerweise 2 Schraubgewinde. Eins befindet sich an der Montageplatte des Balgens, das andere an der objektivseitigen  Kamerastandarte. Wir verbinden die Montageplatte mit dem Stativ und setzt das Kameragehäuse über den T2-Ring an die Kamerastandarte des Balgen an. Löst man die Arretierschraube am Balgen, ist der Lederschlauch frei auf dem Einstellschlitten verschiebbar. Wir stellen nun das Mikroskop unter die ganze Apparatur und fahren vorsichtig den Balgen mit der aufgesetzten Kamera durch Drehen des Stativrads herunter, bis das Polfilter am unteren Teil des Balgens gerade auf dem Plastikschlauch aufliegt. Der Vorteil dieser Anordnung:

 

  • Beim Auslösen der Kamera werden kaum Schwingungen auf das Mikroskop übertragen.
  • Über das Betätigen des Stativrades kann der Balgen kontinuierlich verlängert oder verkürzt werden. Damit können wir den Abbildungsmaßstab verändern, wir zoomen!
  • Die leichte Verschiebung des Tubus beim Scharfstellen am Mikroskop, wird durch den Balgen ausgeglichen, solange die Arretierschraube am Balgen nicht festgestellt ist.

 

Die Bildbeobachtung kann entweder über LiveView, Kamerasucher oder am besten am Bildschirm mit Hilfe einer geeigneten Software wie Nikon Camera Control oder digiCam Control erfolgen.

Hier 2 Beispiele, die mit dem oben abgebildeten Mikroskop aufgenommen wurden.

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 4x
Balgenauszug 0%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 4x
Balgenauszug 50%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 4x
Balgenauszug 100%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 10x
Balgenauszug 0%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 10x
Balgenauszug 50%

Mikrokristalle Harnstoff

Mikrokristalle von Harnstoff im polarisierten Licht.
Okular 10x, Objektiv 10x
Balgenauszug 100%

Soviel für heute, liebe Freunde der Mikrokristalle.

Der nächste Blogbeitrag hat die Adaption eines Balgen-Geräts an ein trinokulares Mikroskop am Beispiel des Bresser Researcher Trino zum Thema.
Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

 

Harnstoff: Ein Wegbereiter der Organischen Chemie.

Hallo liebe Freunde der Mikrokristalle,

heute wenden wir uns, im Titel ist es schon angesprochen, einer sehr bedeutenden Substanz der Organischen Chemie zu, dem Harnstoff.

Was macht ihn so bedeutend?  1828 tritt der Harnstoff also Wegbereiter der Organischen Chemie in die Geschichte der Chemie ein. Bis dahin war man der Auffassung, dass chemische Substanzen, die in der belebten Welt, also im Pflanzen- und Tierreich vorkommen, nicht vom Menschen synthetisch hergestellt werden können. Man glaubte, eine besondere „Lebenskraft“ sein dazu erforderlich. Aber 1828 gelang es dem deutschen Chemiker Friedrich Wöhler, aus den rein anorganischen Ausgangsstoffen Kaliumcyanat und Ammoniumsulfat,  Harnstoff zu erzeugen. Damit war es erstmals gelungen, eine Substanz der belebten Natur im Labor aus anorganischen Stoffen herzustellen. Das war eine Sensation, zumindest aus heutiger Sicht, denn damals war sich Wöhler der ganzen Tragweite seiner Arbeit wohl gar nicht voll bewusst. Aber die Organische Chemie trat ihren Siegeszug um die Welt an. Bis heute sind etwa 40 Millionen organische Substanzen bekannt, mehre Millionen davon wurden künstlich in Laboratorien hergestellt.

Und alles begann mit dem Harnstoff. Darum gleich mal ein Foto von dieser tollen Substanz:

Harnstoff

Harnstoff-Kristalle unter dem Mikroskop im polarisierten Licht.

Chemisch betrachtet ist Harnstoff das Diamid der Kohlensäure. Für den Nichtchemiker: Im Mineralwasser kennen wir die sprudelnde Kohlensäure. Wenn diese unter bestimmten Bedingungen mit Ammoniak (Salmiakgeist) chemisch reagiert, (150 Grad Celsius 100 ATM. Druck), erhalten wir Harnstoff.

Im menschlichen und tierischen Körper entsteht Harnstoff als Abbauprodukt von Proteinen (Eiweiss). Wir scheiden täglich etwa 30 Gramm Harnstoff über den Urin aus, daher auch der Name.

Die chemische Formel von Harnstoff:

Harnstoff

Harnstoff

Und wenn die Formel auch sehr unspektakulär ist, Harnstoff bildet sehr schöne Mikrokristalle unter dem Mikroskop im polarisierten Licht:

Harnstoff

Harnstoff-Kristalle unter dem Mikroskop im polarisierten Licht.

Und nun wird es ganz aktuell und etwas heikel.

Wir wenden uns dem Dieselmotor und damit auch dem VW-Skandal zu. Die Verbrennung des Dieseltreibstoffs in Dieselmotoren erfordert sehr viel höhere Temperaturen und Drücke, als die Verbrennung von Benzin in Otto-Motoren. Die Verbrennungsluft enthält bekanntlich neben Sauerstoff auch Stickstoff. Unter den Temperatur- und Druckbedingungen im Dieselmotor, reagiert Luftsauerstoff mit Luftstickstoff zu Stickoxiden, besser bekannt unter der Bezeichnung NOx. Diese Bezeichnung wurde gewählt, weil es verschiedene Stickstoff/Sauerstoff- Verbindungen gibt: So ist N2O  das bekannte Lachgas, das in der Zahnmedizin also Narkosemittel verwendet wird. NO2 ist eine besonders giftige Verbindung, die sich in der Lunge mit Wasser zu Salpetersäure umsetzt. Diese Säure ist extrem giftig. Besonderes tückisch an den Stickoxiden ist, daß sie nicht einmal sehr ätzend riechen. Man hält beim Einatmen nicht sofort die Luft an.

Aus den Abgasen der Dieselautos werden die Stickoxide entfernt, und das mit Hilfe des Harnstoffs. Harnstoff reagiert chemisch mit ihnen und macht sie unschädlich. Dieser Prozess klingt sehr einfach, ist in der Praxis aber kompliziert. So muss die Harnstoffmenge sehr exakt dosiert werden, was einen erheblichen technischen Aufwand erforderlich macht. Einfacher ist es, den ganzen Mechanismus einfach abzuschalten, in der Hoffnung, daß es keiner merkt.

Hier gleich noch ein Foto des vielseitigen Harnstoffs:

Harnstoff

Harnstoff-Kristalle unter dem Mikroskop im polarisierten Licht.

Harnstoff bekommt man normalerweise ohne Probleme in der Apotheke, besonders wenn man dem Apotheker sagt, was man damit vorhat. Die Substanz ist sehr gut in Wasser und Spiritus löslich und kristallisiert aus beiden Lösungsmitteln sehr gut.

Einfach ein paar Kristalle auf einen sauberen Objektträger geben, einen Tropfen dest. Wasser oder Spiritus oder eine Mischung beider Lösungsmittel 1:1 hinzugeben. Die Kristalle lösen sich sofort. An einem staubfreien Ort ohne Deckglas eintrocknen lassen. Man kann die Proben später mit einem Deckglas abdecken und vorsichtig auf einer Herdplatte aufschmelzen. Harnstoff schmilzt bei 133 Grad Celsius unter Zersetzung. Darum schnell wieder von der Herdplatte nehmen, wenn die Kristalle geschmolzen sind. Unter dem Mikroskop, im polarisierten Licht finden wir farbenprächtige Kristalle.Die folgende Aufnahme ist so entstanden:

Harnstoff

Harnstoff, kristallisiert aus einer Schmelze unter dem Mikroskop im polarisierten Licht.

Es ist doch bemerkenswert: Bei Mensch und Tier verlassen die Abbauprodukte der Proteine den Körper in Form von Harnstoff über den Urin. In Dieselmotoren eliminiert  Harnstoff schädliches NOx und sorgt für saubere Abgase. Auch in Kraftwerken hilft Harnstoff die Rauchgase von NOx zu befreien, und nicht zu vergessen, wir können auch wunderschöne Mikrofotos davon machen.

Soviel für heute, liebe Freunde der Mikrokristalle.

Im nächsten Blogbeitag wenden wir uns der Frage zu, ob man am Mikroskop beim fotografieren auch zoomen kann.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

 

Kristallwachstum unter dem Mikroskop beobachten und fotografieren.

Hallo liebe Freunde der Mikrokristalle,

es ist sehr spannend, das Wachstum von Mikrokristallen unter dem Mikroskop zu beobachten und zu fotografieren.

Geduld und auch Glück sind erforderlich. Nicht immer wachsen die Kristalle nach unserem Wunsche. Relativ einfach funktioniert es mit der Weinsäure. Auch Vitamin C (Ascorbinsäure) eignet sich sehr gut. Beides bekommt man in der Apotheke, wenn man dem Apotheker sagt, was man damit machen will. Zucker ist weniger geeignet, weil die Kristalle sehr langsam wachsen.

Die hier abgebildete Kristall-Serie ist folgendermaßen entstanden:

270 mg D-Weinsäure (eine Teelöffelspitze) wurden in einer Lösung aus 5 ml dest. Wasser und 5 ml Spiritus kalt gelöst. Ein Tropfen der Lösung wurde auf einen Objektträger ohne Deckglas gegeben und an einem staubfreien Ort getrocknet. Die entstandenen Kristalle wurden mit einem Tropfen Spiritus wieder teilweise gelöst. Der Objektträger wurde unter ein Mikroskop, ausgerüstet mit einer Spiegelreflexkamera und gekreuzten Polarisationsfiltern, gelegt. Sobald der Spiritus zu verdunsten begann, setzte die Kristallisation ein. Im Abstand von einer Minute wurden die folgenden Bilder aufgenommen:

D-Weinsäure

Die Aufnahmen, Vergrößerung 50x,  sind nicht besonders schön, aber es soll hier ja nur das Prinzip gezeigt werden.

Auf YouTube zeige ich das Wachstum von Vitamin C Kristallen. Die Bilder wurden über 30 Minuten im Abstand von 30 Sekunden aufgenommen. Daraus wurde eine Diashow erzeugt, die wie ein Film wirkt. Schaut es Euch mal an. Hier der Link: https://youtu.be/wBAHStWTcd8

Viele Kameras erlauben Intervallaufnahmen, es läßt sich sowohl der Zeitabstand als auch die Gesamtzahl der Bilder an der Kamera voreinstellen. Auch ein Fernauslöser ist für Intervallaufnahmen gut geeignet. Die beste Kontrolle besitzt man allerdings, wenn die Kamera über einen PC oder Laptop gesteuert wird. Man kann so die Entwicklung des Kristallwachstums auf dem Bildschirm beobachten und den Verschluss der Kamera (mit Spiegelvorauslösung, falls vorhanden) ohne Verwackelungsgefahr auslösen.

Bei den hier gezeigten Aufnahmen wurde das Softwareprogramm „CameraControl“ von Nikon verwendet. Für die meisten Spiegelreflexkameras, sie müssen aber über Liveshow verfügen, ist „Helicon Remote“ zur Steuerung der Kamera über einen Computer geeignet. Man kann es zusammen mit „Helicon Focus“ erwerben. Dieses Programm wurde schon einmal kurz in einem Blogbeitrag im Zusammenhang mit dem Stacking  (Erweiterung der Tiefenschärfe) vorgestellt.

Soviel für heute, liebe Freunde der Mikrokristalle.

Im nächsten Blogbeitrag wird die Steuerung der Kamera über einen Laptop etwas näher erläutert.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

Hydrochinon: Vom Fotoentwickler zum Shootingstar.

Hallo liebe Freunde der Mikrokristalle.

Wer in der Zeit der analogen Fotografie seine Filme selber entwickelt hat kennt es: Das Hydrochinon. Die damals sehr häufig verwendete Entwicklersubstanz  bildet aber auch wunderschöne, farbige Mikrokristalle, richtige Shootingstars, besonders aus der Schmelze.

Ein Warnhinweis zu Beginn:

Hydrochinon ist giftig! Früher wurde die toxische Wirkung wohl sehr unterschätzt. Man verwendete Hydrochinon sogar in der Kosmetik zur Herstellung von Cremes, die der Hautaufhellung dienten. Das ist inzwischen verboten. Die Substanz kann man daher auch nicht ohne Weiteres im Handel kaufen, man findet sie aber als Fotochemikalie bei eBay. Es ist schwer zu beurteilen, ob der Verkauf zulässig ist. Für die Mikrokristallisation benötigt man nur wenige Milligramm. Vorsicht ist beim Umgang mit der Chemikalie geboten!

Hier die chemische Formel:

Hydrochinon

Hydrochinon

 

Hydrochinon ist gut löslich in Wasser, Spiritus, Isopropanol und Aceton, und es kristallisiert aus diesen Lösungsmitteln sehr leicht.

Es läßt sich aber, wie schon erwähnt, auch sehr schön aus der Schmelze kristallisieren. Man gibt wenige Kristalle auf einen Objektträger, bedeckt sie mit einem Deckglas und erwärmt, bis das Hydrochinon gerade zu schmelzen beginnt. Der Schmelzpunkt liegt bei 170 Grad C.

Falls man in der Küche arbeitet, unbedingt Dunstabzugshaube anstellen.

Hier einige Bilder die so entstanden sind:

Hydrochinon

Hydrochinon aus der Schmelze kristallisiert.

Hydrochinon

Hydrochinon aus der Schmelze kristallisiert.

Hydrochinon

Hydrochinon aus der Schmelze kristallisiert.

 

Die Aufnahmen wurden mit einem Mikroskop das mit einer orientierenden Polarisationseinrichtung ausgerüstet ist, im polarisierten Licht aufgenommen. Vergrösserung 100 x.

Hydrochinon kristallisiert in verschiedenen Modifikationen. Je nach Kristallisationsbedingungen existieren eine Alpha- Beta- und Gammaform. Die Alpha-Form ist die stabilste und liegt normalerweise beim Kauf der Substanz vor.

Man kann das Kristallwachstum und manchmal auch die Kristallumwandlung unter dem Mikroskop beobachten und natürlich auch fotografieren.

Das, liebe Freunde der Mikrokristalle, wird das Thema meines nächsten Blog-Beitrags sein.

Bis dahin wünsche ich eine gute Zeit.

H-D-S

 

Mikrokristalle aus L-(+)-Arabinose

Hallo liebe Freunde der Mikrokristalle,

unser Haushaltszucker, die Saccharose, bildet aus dest. Wasser kristallisiert, sehr schöne Kristalle. Aber man benötigt Zeit, aus den im vorigen Blogbeitrag genannten Gründen. Schneller geht es mit der Arabinose.

Die Arabinose ist auch ein Zucker, besitzt aber nur 5 Kohlenstoff-Atome und ist also eine Pentose. Eine sehr ähnliche Verbindung, nur in der räumlichen Anordnung der OH-Gruppen etwas anders, ist die D-Ribose. Sie ist Bestandteil unserer RNA (Ribonukleinsäure), die eine tragende Rolle in unserem Zellgeschehen spielt. Hier die beiden Formeln in der Fischer-Projektion:

L-(+)-Arabinose D-Ribose

L-(+)-Arabinose D-Ribose

Auch die Arabinose liegt in einer ringförmigen Struktur vor. Sie kann, bei der Glucose wurde es nicht erwähnt, genau wie diese, sogar zwei ringförmige Strukturen, nämlich einen Fünfring und einen Sechsring bilden. Hier wird es am Beispiel der D-Arabinose gezeigt:

Alpha-D-Arabinopyranose Beta-D-Arabinopyranose

Alpha-D-Arabinopyranose Beta-D-Arabinopyranose

Bei dem Ringschluß entsteht wie früher bei der Glucose besprochen ein neues Asymmetriezentrum (ganz rechtes C-Atom), so daß wir wiederum eine Alpha- und eine Beta-Form erhalten. Neben dem Pyranosering mit 6 C-Atomen, kann auch ein Fünfring, der Furanosering genannt wird, entstehen:

Alpha-D-Arabinofuranose Beta-D-Arabinofuranose

Alpha-D-Arabinofuranose Beta-D-Arabinofuranose

Auch hier entsteht ein neues Asymmetriezentrum, daher auch wieder die zwei Formen.

So kompliziert die Arabinose auch erscheinen mag, sie kristallisiert sehr leicht aus destilliertem Wasser.

Man gibt einige wenige Körnchen auf einen sauberen Objektträger und löst sie mit einem Tropfen dest. Wasser. Schon nach kurzer Zeit, spätestens über Nacht ist die Probe vollständig kristallisiert. Hier einige Aufnahmen der L-(+)-Arabinose:

L-(+)-Arabinose

L-(+)-Arabinose

L-(+)-Arabinose

L-(+)-Arabinose

L-(+)-Arabinose

L-(+)-Arabinose

Woher bekommt man diesen fotogenen Zucker? Manchmal hilft ein Apotheker, wenn man ihm erklärt, was man damit anfangen will. Arabinose ist aber nicht ganz billig. 5 g kosten ca. 10 EURO.

Soviel für heute, liebe Freunde der Mikrokristalle. Im nächsten Blogbeitrag geht es um ein chemisches Element, das sich ausgezeichnet für die Mikrokristallisation eignet, dem Schwefel.

Bis dahin wünsche ich eine gute Zeit.

H-D-S